3,916 research outputs found

    Focused-ion-beam-induced deposition of superconducting nanowires

    Full text link
    Superconducting nanowires, with a critical temperature of 5.2 K, have been synthesized using an ion-beam-induced deposition, with a Gallium focused ion beam and Tungsten Carboxyl, W(CO)6, as precursor. The films are amorphous, with atomic concentrations of about 40, 40, and 20 % for W, C, and Ga, respectively. Zero Kelvin values of the upper critical field and coherence length of 9.5 T and 5.9 nm, respectively, are deduced from the resistivity data at different applied magnetic fields. The critical current density is Jc= 1.5 10^5 A/cm2 at 3 K. This technique can be used as a template-free fabrication method for superconducting devices.Comment: Accepted for publication in Applied Physics Letter

    Effects of electromagnetic field of 33 and 275 kV influences on physiological, biochemical and antioxidant system changes of leaf mustard (Brassica chinensis)

    Get PDF
    The effects of electromagnetic fields (EMF) from 33 and 275 kV high voltage transmission line on biochemical and antioxidant system changes in mustard leaf (Brassica chinensis) were investigated under field condition. Mustard leaves were exposed to EMF from power lines at distances of 0, 3, 6, 9, 10, 12, 15, 18, 20, 21, 30, 40, 50 and 60 m away from the 33 kV power line and at 0, 10, 20, 30, 40, 50, 60 and 70 m away from the 275 kV transmission lines. The effects of EMF from 33 kV power lines on leaf mustard planted at different distances from the line showed that leaf mustard planted within 20 m from the line had significantly (p< 0.05) higher protein, soluble protein, soluble nitrogen and chlorophyll contents due to the higher EMF strength which decreased with increasing distance from the line. Higher EMF strength nearer to the 275 kV power line resulted in higher peroxidase enzymatic activity, and chlorophyll content. Protein electrophoretic profile obtained from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) analysis revealed no drastic alterations in the leaf mustard protein profiles. This suggests that electromagnetic field could be used as a tool to promote mustard growth via photosynthesis once the right EMF strength and duration of exposure has been established through future studies.Keywords: Mustard, electromagnetic field, biochemical marker

    Gravitational radiation from nonaxisymmetric spherical Couette flow in a neutron star

    Get PDF
    The gravitational wave signal generated by global, nonaxisymmetric shear flows in a neutron star is calculated numerically by integrating the incompressible Navier--Stokes equation in a spherical, differentially rotating shell. At Reynolds numbers \Rey \gsim 3 \times 10^{3}, the laminar Stokes flow is unstable and helical, oscillating Taylor--G\"ortler vortices develop. The gravitational wave strain generated by the resulting kinetic-energy fluctuations is computed in both ++ and ×\times polarizations as a function of time. It is found that the signal-to-noise ratio for a coherent, 10810^{8}-{\rm s} integration with LIGO II scales as 6.5(Ω/104rads1)7/2 6.5 (\Omega_*/10^{4} {\rm rad} {\rm s}^{-1})^{7/2} for a star at 1 {\rm kpc} with angular velocity Ω\Omega_*. This should be regarded as a lower limit: it excludes pressure fluctuations, herringbone flows, Stuart vortices, and fully developed turbulence (for \Rey \gsim 10^{6}).Comment: (1) School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. (2) Departamento de Fisica, Escuela de Ciencias,Universidad de Oriente, Cumana, Venezuela, (3) Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3010, Australia. Accepted for publication in The Astrophysical Journal Letter

    A Singularity-Avoiding Moving Least Squares Scheme for Two Dimensional Unstructured Meshes

    Get PDF
    Moving least squares interpolation schemes are in widespread use as a tool for numerical analysis on scattered data. In particular, they are often employed when solving partial differential equations on unstructured meshes, which are typically needed when the geometry defining the domain is complex. It is known that such schemes can be singular if the data points in the stencil happen to be in certain special geometric arrangements, however little research has addressed this issue specifically. In this paper, a moving least squares scheme is presented which is an appropriate tool for use when solving partial differential equations in two dimensions, and the precise conditions under which singularities occur are identified. The theory is then applied in the form of a stencil building algorithm which automatically detects singular stencils and corrects them in an efficient manner, while attempting to maintain stencil symmetry as closely as possible. Finally, the scheme is used in a convection-diffusion equation solver, and the results of a number of simulations are presented

    Microcantilever Studies of Angular Field Dependence of Vortex Dynamics in BSCCO

    Full text link
    Using a nanogram-sized single crystal of BSCCO attached to a microcantilever we demonstrate in a direct way that in magnetic fields nearly parallel to the {\it ab} plane the magnetic field penetrates the sample in the form of Josephson vortices rather than in the form of a tilted vortex lattice. We further investigate the relation between the Josephson vortices and the pancake vortices generated by the perpendicular field component.Comment: 5 pages, 8 figure

    An improved wrapper-based feature selection method for machinery fault diagnosis

    Get PDF
    A major issue of machinery fault diagnosis using vibration signals is that it is over-reliant on personnel knowledge and experience in interpreting the signal. Thus, machine learning has been adapted for machinery fault diagnosis. The quantity and quality of the input features, however, influence the fault classification performance. Feature selection plays a vital role in selecting the most representative feature subset for the machine learning algorithm. In contrast, the trade-off relationship between capability when selecting the best feature subset and computational effort is inevitable in the wrapper-based feature selection (WFS) method. This paper proposes an improved WFS technique before integration with a support vector machine (SVM) model classifier as a complete fault diagnosis system for a rolling element bearing case study. The bearing vibration dataset made available by the Case Western Reserve University Bearing Data Centre was executed using the proposed WFS and its performance has been analysed and discussed. The results reveal that the proposed WFS secures the best feature subset with a lower computational effort by eliminating the redundancy of re-evaluation. The proposed WFS has therefore been found to be capable and efficient to carry out feature selection tasks

    Defect cluster recognition system for fabricated semiconductor wafers

    Get PDF
    The International Technology Roadmap for Semiconductors (ITRS) identifies production test data as an essential element in improving design and technology in the manufacturing process feedback loop. One of the observations made from the high-volume production test data is that dies that fail due to a systematic failure have a tendency to form certain unique patterns that manifest as defect clusters at the wafer level. Identifying and categorising such clusters is a crucial step towards manufacturing yield improvement and implementation of real-time statistical process control. Addressing the semiconductor industry's needs, this research proposes an automatic defect cluster recognition system for semiconductor wafers that achieves up to 95% accuracy (depending on the product type)
    corecore