148 research outputs found

    Dramatically different levels of cacna1a gene expression between pre-weaning wild type and leaner mice

    Get PDF
    Loss of function mutations of the CACNA1A gene, coding for the α1A subunit of P/Q type voltage-gated calcium channel (Ca(V)2.1), are responsible for Episodic Ataxia type 2 (EA2), an autosomal dominant disorder. A dominant negative effect of the EA2 mutated protein, rather than a haploinsufficiency mechanism, has been hypothesised both for protein-truncating and missense mutations. We analysed the cacna1a mRNA expression in leaner mice carrying a cacna1a mutation leading to a premature stop codon. The results showed a very low mutant mRNA expression compared to the wild type allele. Although the mutant mRNA slightly increases with age, its low level is likely due to degradation by nonsense mediated decay, a quality control mechanism that selectively degrades mRNA harbouring premature stop codons. These data have implications for EA2 in humans, suggesting a haploinsufficiency mechanism at least for some of the CACNA1A mutations leading to a premature stop codon

    Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures.

    Get PDF
    none12Recent evidence shows that cells exchange collections of signals via microvesicles (MVs) and tunneling nano-tubes (TNTs). In this paper we have investigated whether in cell cultures GPCRs can be transferred by means of MVs and TNTs from a source cell to target cells. Western blot, transmission electron microscopy and gene expression analyses demonstrate that A(2A) and D(2) receptors are present in released MVs. In order to further demonstrate the involvement of MVs in cell-to-cell communication we created two populations of cells (HEK293T and COS-7) transiently transfected with D(2)R-CFP or A(2A)R-YFP. These two types of cells were co-cultured, and FRET analysis demonstrated simultaneously positive cells to the D(2)R-CFP and A(2A)R-YFP. Fluorescence microscopy analysis also showed that GPCRs can move from one cell to another also by means of TNTs. Finally, recipient cells pre-incubated for 24 h with A(2A)R positive MVs were treated with the adenosine A(2A) receptor agonist CGS-21680. The significant increase in cAMP accumulation clearly demonstrated that A(2A)Rs were functionally competent in target cells. These findings demonstrate that A(2A) receptors capable of recognizing and decoding extracellular signals can be safely transferred via MVs from source to target cells.openM. Guescini; G. Leo; S. Genedani; C. Carone; F. Pederzoli; F. Ciruela; D. Guidolin; V. Stocchi; M. Mantuano; D.O. Borroto-Escuela; K. Fuxe; L.F. AgnatiGuescini, Michele; G., Leo; S., Genedani; C., Carone; F., Pederzoli; F., Ciruela; D., Guidolin; Stocchi, Vilberto; Mantuano, Michela; D. O., Borroto Escuela; K., Fuxe; L. F., Agnat

    Leukocyte telomere length variability as a potential biomarker in patients with polyQ diseases

    Get PDF
    SCA1, SCA2, and SCA3 are the most common forms of SCAs among the polyglutamine disorders, which include Huntington's Disease (HD). We investigated the relationship between leukocyte telomere length (LTL) and the phenotype of SCA1, SCA2, and SCA3, comparing them with HD. The results showed that LTL was significantly reduced in SCA1 and SCA3 patients, while LTL was significantly longer in SCA2 patients. A significant negative relationship between LTL and age was observed in SCA1 but not in SCA2 subjects. LTL of SCA3 patients depend on both patient's age and disease duration. The number of CAG repeats did not affect LTL in the three SCAs. Since LTL is considered an indirect marker of an inflammatory response and oxidative damage, our data suggest that in SCA1 inflammation is present already at an early stage of disease similar to in HD, while in SCA3 inflammation and impaired antioxidative processes are associated with disease progression. Interestingly, in SCA2, contrary to SCA1 and SCA3, the length of leukocyte telomeres does not reduce with age. We have observed that SCAs and HD show a differing behavior in LTL for each subtype, which could constitute relevant biomarkers if confirmed in larger cohorts and longitudinal studies

    Sensorimotor adaptation as a behavioural biomarker of early spinocerebellar ataxia type 6.

    Get PDF
    Early detection of the behavioural deficits of neurodegenerative diseases may help to describe the pathogenesis of such diseases and establish important biomarkers of disease progression. The aim of this study was to identify how sensorimotor adaptation of the upper limb, a cerebellar-dependent process restoring movement accuracy after introduction of a perturbation, is affected at the pre-clinical and clinical stages of spinocerebellar ataxia type 6 (SCA6), an inherited neurodegenerative disease. We demonstrate that initial adaptation to the perturbation was significantly impaired in the eighteen individuals with clinical motor symptoms but mostly preserved in the five pre-clinical individuals. Moreover, the amount of error reduction correlated with the clinical symptoms, with the most symptomatic patients adapting the least. Finally both pre-clinical and clinical individuals showed significantly reduced de-adaptation performance after the perturbation was removed in comparison to the control participants. Thus, in this large study of motor features in SCA6, we provide novel evidence for the existence of subclinical motor dysfunction at a pre-clinical stage of SCA6. Our findings show that testing sensorimotor de-adaptation could provide a potential predictor of future motor deficits in SCA6

    The role of P2 receptors in controlling infections by intracellular pathogens

    Get PDF
    A growing number of studies have demonstrated the importance of ATPe-signalling via P2 receptors as an important component of the inflammatory response to infection. More recent studies have shown that ATPe can also have a direct effect on infection by intracellular pathogens, by modulating membrane trafficking in cells that contain vacuoles that harbour intracellular pathogens, such as mycobacteria and chlamydiae. A conserved mechanism appears to be involved in controlling infection by both of these pathogens, as a role for phospholipase D in inducing fusion between lysosomes and the vacuoles has been demonstrated. Other P2-dependent mechanisms are most likely operative in the cases of pathogens, such as Leishmania, which survive in an acidic phagolysosomal-like compartment. ATPe may function as a ‘danger signal–that alerts the immune system to the presence of intracellular pathogens that damage the host cell, while different intracellular pathogens have evolved enzymes or other mechanisms to inhibit ATPe-mediated signalling, which should, thus, be viewed as virulence factors for these pathogens
    • …
    corecore