116 research outputs found
Charge-Transfer Bonding in MetalâArene Coordination
X-ray crystallographic structures of donorâacceptor complexes of aromatic hydrocarbons with transition metals are re-examined with the focus on the arene ligands. Thus, significant structural and electronic changes are revealed in the arene moiety due to coordination to the metal center including: (i) expansion of the aromatic six-carbon ring; (ii) endocyclic Ď-bond localization; (iii) distortion of the planarity (folding) of the arene ring; and (iv) shortening of the metal-arene bond distances. All structural features are characteristic of metalâarene (Ď- or Ď-) complexes that exhibit various degrees of (metal-to-ligand) charge transfer. The concept of charge-transfer bonding not only explains the structural details but also the various facets of chemical reactivity of metal-coordinated arenes including efficient carbon-hydrogen bond activation and nucleophilicâelectrophilic umpolung, both of which are critical factors in homogeneous metal catalysis
Photoinduced Coupling of Acetylenes and Quinone in the Solid State as Preorganized DonorâAcceptor Pairs
Crystalline electron donorâacceptor (EDA) complexes of various diarylacetylenes (DA) and dichlorobenzoquinone (DB) are isolated and structurally characterized by X-ray crystallography. Deliberate excitation of either the DB acceptor at ÎťDB = 355 nm or the 1:2 [DA, 2DB] complex at ÎťCT = 532 nm in the solid state leads to [2 + 2] cycloaddition and identical (isomeric) mixtures of the quinone methide products. Time-resolved (ps) diffuse reflectance spectroscopy identifies the ion-radical pair [DAâ˘+, DBâ˘-] as the reactive intermediate derived by photoinduced electron transfer in both photochemical procedures. The effects of crystal-lattice control on the subsequent ion-radical pair dynamics are discussed in comparison with the same photocouplings of acetylenes and quinone previously carried out in solution
DielsâAlder Topochemistry via Charge-Transfer Crystals:â Novel (Thermal) Single-Crystal-to-Single-Crystal Transformations
The solid-state [4+2] cycloaddition of anthracene to bis(N-ethylimino)-1,4-dithiin occurs via a unique single-phase topochemical reaction in the intermolecular (1:1) charge-transfer crystal. The thermal heteromolecular solid-state condensation involves the entire crystal, and this rare crystalline event follows topochemical control during the entire cycloaddition. As a result, a new crystalline modification of the DielsâAlder product is formed with a crystal-packing similar to that of the starting charge-transfer crystal but very different from that of the (thermodynamically favored) product modification obtained from solution-phase crystallization. Such a single-phase transformation is readily monitored by X-ray crystallography at various conversion stages, and the temporal changes in crystallographic parameters are correlated with temperature-dependent (solid-state) kinetic data that are obtained by 1H NMR spectroscopy at various reaction times. Thus, an acceleration of the solid-state reaction over time is found which results from a progressive lowering of the activation barrier for cycloaddition in a single crystal as it slowly and homogeneously converts from the reactant to the product lattice
Novel Charge-Transfer Materials via Cocrystallization of Planar Aromatic Donors and Spherical Polyoxometalate Acceptors
Spherical polyoxometalates (POMs) such as M6O192- and SiM12O404- (with M = Mo or W) and planar arene donors (anthracenes and pyrenes) can be cocrystallized (despite their structural incompatibility) by attaching a cationic âanchorâ onto the arene which then clings to the POM anion by Coulombic forces. As a result, novel charge-transfer (CT) salts are prepared from arene donors and Lindqvist-type [M6O19]2- and Keggin-type [SiM12O40]4- acceptors with overall 2:1 and 4:1 stoichiometry, respectively. The CT character of the dark-colored (yellow to red) crystalline materials is confirmed by the linear Mulliken correlation between the CT transition energies and the reduction potentials of the POM acceptors, as well as by the transient (diffuse reflectance) absorption spectra (upon picosecond laser excitation) of anthracene or pyrene cation radicals (in monomeric and Ď-dimeric forms). X-ray crystallographic studies reveal a unique âdimericâ arrangement of the cofacially oriented arene couples which show contact points with the oxygen surface of the POMs that vary with distance, depending on the POM/arene combination. Moreover, the combination of X-ray crystallographic and spectroscopic techniques results in the observation of a logical structure/property relationshipthe shorter the distance between the POM surface and the arene nucleus, the darker is the color of the CT crystal and the faster is the decay of the laser-excited charge-transfer state (due to back-electron transfer)
Thermal Control of Spin Excitations in the Coupled Ising-Chain Material RbCoCl<sub>3</sub>
We have used neutron spectroscopy to investigate the spin dynamics of the quantum (S = 1/2) antiferromagnetic Ising chains in RbCoCl3. The structure and magnetic interactions in this material conspire to produce two magnetic phase transitions at low temperatures, presenting an ideal opportunity for thermal control of the chain environment. The high-resolution spectra we measure of two-domain-wall excitations therefore characterize precisely both the continuum response of isolated chains and the "Zeeman-ladder" bound states of chains in three different effective staggered fields in one and the same material. We apply an extended Matsubara formalism to obtain a quantitative description of the entire dataset, Monte Carlo simulations to interpret the magnetic order, and finite-temperature density-matrix renormalization-group calculations to fit the spectral features of all three phases
Versatile Coordination of Cyclopentadienyl-Arene Ligands and Its Role in Titanium-Catalyzed Ethylene Trimerization
Cationic titanium(IV) complexes with ansa-(Ρ5-cyclopentadienyl,Ρ6-arene) ligands were synthesized and characterized by X-ray crystallography. The strength of the metal-arene interaction in these systems was studied by variable-temperature NMR spectroscopy. Complexes with a C1 bridge between the cyclopentadienyl and arene moieties feature hemilabile coordination behavior of the ligand and consequently are active ethylene trimerization catalysts. Reaction of the titanium(IV) dimethyl cations with CO results in conversion to the analogous cationic titanium(II) dicarbonyl species. Metal-to-ligand backdonation in these formally low-valent complexes gives rise to a strongly bonded, partially reduced arene moiety. In contrast to the Ρ6-arene coordination mode observed for titanium, the more electron-rich vanadium(V) cations [cyclopentadienyl-arene]V(NiPr2)(NC6H4-4-Me)+ feature Ρ1-arene binding, as determined by a crystallographic study. The three different metal-arene coordination modes that we experimentally observed model intermediates in the cycle for titanium-catalyzed ethylene trimerization. The nature of the metal-arene interaction in these systems was studied by DFT calculations.
Service robotics: do you know your new companion? Framing an interdisciplinary technology assessment
Service-Roboticâmainly defined as ânon-industrial roboticsââis identified as the next economical success story to be expected after robots have been ubiquitously implemented into industrial production lines. Under the heading of service-robotic, we found a widespread area of applications reaching from robotics in agriculture and in the public transportation system to service robots applied in private homes. We propose for our interdisciplinary perspective of technology assessment to take the human user/worker as common focus. In some cases, the user/worker is the effective subject acting by means of and in cooperation with a service robot; in other cases, the user/worker might become a pure object of the respective robotic system, for example, as a patient in a hospital. In this paper, we present a comprehensive interdisciplinary framework, which allows us to scrutinize some of the most relevant applications of service robotics; we propose to combine technical, economical, legal, philosophical/ethical, and psychological perspectives in order to design a thorough and comprehensive expert-based technology assessment. This allows us to understand the potentials as well as the limits and even the threats connected with the ongoing and the planned implementation of service robots into human lifeworldâparticularly of those technical systems displaying increasing grades of autonomy
- âŚ