304,419 research outputs found

    Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments

    Full text link
    We present direct time- and space- resolved measurements of the electron density of femtosecond laser pulse-induced plasma filaments. The dominant nonlinearity responsible for extended atmospheric filaments is shown to be field-induced rotation of air molecules.Comment: 12 pages, 5 figure

    A model for the formation of the active region corona driven by magnetic flux emergence

    Full text link
    We present the first model that couples the formation of the corona of a solar active region to a model of the emergence of a sunspot pair. This allows us to study when, where, and why active region loops form, and how they evolve. We use a 3D radiation MHD simulation of the emergence of an active region through the upper convection zone and the photosphere as a lower boundary for a 3D MHD coronal model. The latter accounts for the braiding of the magnetic fieldlines, which induces currents in the corona heating up the plasma. We synthesize the coronal emission for a direct comparison to observations. Starting with a basically field-free atmosphere we follow the filling of the corona with magnetic field and plasma. Numerous individually identifiable hot coronal loops form, and reach temperatures well above 1 MK with densities comparable to observations. The footpoints of these loops are found where small patches of magnetic flux concentrations move into the sunspots. The loop formation is triggered by an increase of upwards-directed Poynting flux at their footpoints in the photosphere. In the synthesized EUV emission these loops develop within a few minutes. The first EUV loop appears as a thin tube, then rises and expands significantly in the horizontal direction. Later, the spatially inhomogeneous heat input leads to a fragmented system of multiple loops or strands in a growing envelope.Comment: 13 pages, 10 figures, accepted to publication in A&

    Magnetic Jam in the Corona of the Sun

    Full text link
    The outer solar atmosphere, the corona, contains plasma at temperatures of more than a million K, more than 100 times hotter that solar surface. How this gas is heated is a fundamental question tightly interwoven with the structure of the magnetic field in the upper atmosphere. Conducting numerical experiments based on magnetohydrodynamics we account for both the evolving three-dimensional structure of the atmosphere and the complex interaction of magnetic field and plasma. Together this defines the formation and evolution of coronal loops, the basic building block prominently seen in X-rays and extreme ultraviolet (EUV) images. The structures seen as coronal loops in the EUV can evolve quite differently from the magnetic field. While the magnetic field continuously expands as new magnetic flux emerges through the solar surface, the plasma gets heated on successively emerging fieldlines creating an EUV loop that remains roughly at the same place. For each snapshot the EUV images outline the magnetic field, but in contrast to the traditional view, the temporal evolution of the magnetic field and the EUV loops can be different. Through this we show that the thermal and the magnetic evolution in the outer atmosphere of a cool star has to be treated together, and cannot be simply separated as done mostly so far.Comment: Final version published online on 27 April 2015, Nature Physics 12 pages and 8 figure

    Hooge's Constant of Carbon Nanotube Field Effect Transistors

    Full text link
    The 1/f noise in individual semiconducting carbon nanotubes (s-CNT) in a field effect transistor configuration has been measured in ultra-high vacuum and following exposure to air. The amplitude of the normalized current spectral noise density is independent of source-drain current, indicating the noise is due to mobility rather than number fluctuations. Hooge's constant for s-CNT is found to be 9.3 plus minus 0.4x10^-3. The magnitude of the 1/f noise is substantially degreased by exposing the devices to air

    Non-exponential kinetic behavior of confined water

    Full text link
    We present the results of molecular dynamics simulations of SPC/E water confined in a realistic model of a silica pore. The single-particle dynamics have been studied at ambient temperature for different hydration levels. The confinement near the hydrophilic surface makes the dynamic behaviour of the liquid strongly dependent on the hydration level. Upon decrease of the number of water molecules in the pore we observe the onset of a slow dynamics due to the ``cage effect''. The conventional picture of a stochastic single-particle diffusion process thus looses its validity

    Multi-wavelength variability properties of Fermi blazar S5 0716+714

    Full text link
    S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long term simultaneous observations in the radio, near-infrared, optical, X-ray and γ\gamma-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ\gamma-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which are similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows that the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ\gamma-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero-lag, so are the V band and γ\gamma-ray variations, which are consistent with the leptonic models. Coincidences of γ\gamma-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same nature explanation for these observations as the leptonic models. A strong optical flare correlating a γ\gamma-ray flare whose peak flux is lower than the average flux is detected. Leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out due to the extreme input parameters. Scattering of external seed photons, such as the hot dust or broad line region emission, and the SSC process are probably both needed to explain the γ\gamma-ray emission of S5 0716+714.Comment: 43 pages, 13 figures, 3 tables, to be appeared in Ap

    Reciprocatory magnetic reconnection in a coronal bright point

    Full text link
    Coronal bright points (CBPs) are small-scale and long-duration brightenings in the lower solar corona. They are often explained in terms of magnetic reconnection. We aim to study the sub-structures of a CBP and clarify the relationship among the brightenings of different patches inside the CBP. The event was observed by the X-ray Telescope (XRT) aboard the Hinode spacecraft on 2009 August 22−-23. The CBP showed repetitive brightenings (or CBP flashes). During each of the two successive CBP flashes, i.e., weak and strong flashes which are separated by ∼\sim2 hr, the XRT images revealed that the CBP was composed of two chambers, i.e., patches A and B. During the weak flash, patch A brightened first, and patch B brightened ∼\sim2 min later. During the transition, the right leg of a large-scale coronal loop drifted from the right side of the CBP to the left side. During the strong flash, patch B brightened first, and patch A brightened ∼\sim2 min later. During the transition, the right leg of the large-scale coronal loop drifted from the left side of the CBP to the right side. In each flash, the rapid change of the connectivity of the large-scale coronal loop is strongly suggestive of the interchange reconnection. For the first time we found reciprocatory reconnection in the CBP, i.e., reconnected loops in the outflow region of the first reconnection process serve as the inflow of the second reconnection process.Comment: 13 pages, 8 figure
    • …
    corecore