1,123 research outputs found
Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis
Supplemental oxygen is a supportive treatment in patients with sepsis to balance tissue oxygen delivery and demand in the tissues. However, hyperoxia may induce some pathological effects. We sought to assess organ damage associated with hyperoxia and its correlation with the production of reactive oxygen species (ROS) in a preclinical model of intra-abdominal sepsis. For this purpose, sepsis was induced in male, Sprague-Dawley rats by cecal ligation and puncture (CLP). We randomly assigned experimental animals to three groups: control (healthy animals), septic (CLP), and sham-septic (surgical intervention without CLP). At 18 h after CLP, septic (n = 39), sham-septic (n = 16), and healthy (n = 24) animals were placed within a sealed Plexiglas cage and randomly distributed into four groups for continuous treatment with 21%, 40%, 60%, or 100% oxygen for 24 h. At the end of the experimental period, we evaluated serum levels of cytokines, organ damage biomarkers, histological examination of brain and lung tissue, and ROS production in each surviving animal. We found that high oxygen concentrations increased IL-6 and biomarkers of organ damage levels in septic animals, although no relevant histopathological lung or brain damage was observed. Healthy rats had an increase in IL-6 and aspartate aminotransferase at high oxygen concentration. IL-6 levels, but not ROS levels, are correlated with markers of organ damage. In our study, the use of high oxygen concentrations in a clinically relevant model of intra-abdominal sepsis was associated with enhanced inflammation and organ damage. These findings were unrelated to ROS release into circulation. Hyperoxia could exacerbate sepsis-induced inflammation, and it could be by itself detrimental. Our study highlights the need of developing safer thresholds for oxygen therapy
Impact of extracellular vesicle isolation methods on downstream mirna analysis in semen: A comparative study
Seminal plasma (SP) contains a unique concentration of miRNA, mostly contained in small extracellular vesicles (sEVs) such as exosomes, some of which could be clinically useful for diagnosis and/or prognosis of urogenital diseases such as prostate cancer (PCa). We optimized several exosome-EV isolation technologies for their use in semen, evaluating EV purifying effectiveness and impact on the downstream analysis of miRNAs against results from the standard ultracentrifugation (UC) method to implement the use of SP sEV_miRNAs as noninvasive biomarkers for PCa. Our results evidenced that commercial kits designed to isolate exosomes/EVs from blood or urine are mostly applicable to SP, but showed quantitative and qualitative variability between them. ExoGAG 3500x g and the miRCURY Cell/Urine/CSF 1500x g methods resulted as equivalent alternative procedures to UC for isolating exosomes/sEVs from semen for nanoparticle characteristics and quality of RNA contained in vesicles. Additionally, the expression profile of the altered semen sEV-miRNAs in PCa varies depending on the EV isolation method applied. This is possibly due to different extraction techniques yielding different proportions of sEV subtypes. This is evidence that the exosome-EV isolation method has a significant impact on the analysis of the miRNAs contained within, with important consequences for their use as clinical biomarkers. Therefore, miRNA analysis results for EVs cannot be directly extrapolated between different EV isolation methods until clear markers for delineation between microvesicles and exosomes are established. However, EV extraction methodology affects combined models (semen exosome miRNA signatures plus blood Prostate specific antigen (PSA) concentration for PCa diagnosis) less; specifically our previously described (miR-142-3p + miR-142-5p + miR-223-3p + PSA) model functions as molecular marker from EVs from any of the three isolation methods, potentially improving the efficiency of PSA PCa diagnosis
Points to consider in cardiovascular disease risk management among patients with rheumatoid arthritis living in South Africa, an unequal middle income country
Background: It is plausible that optimal cardiovascular disease (CVD) risk management differs in patients with rheumatoid arthritis (RA) from low or middle income compared to high income populations. This study aimed at producing evidence-based points to consider for CVD prevention in South African RA patients. Methods: Five rheumatologists, one cardiologist and one epidemiologist with experience in CVD risk management in RA patients, as well as two patient representatives, two health professionals and one radiologist, one rheumatology fellow and 11 rheumatologists that treat RA patients regularly contributed. Systematic literature searches were performed and the level of evidence was determined according to standard guidelines. Results: Eighteen points to consider were formulated. These were grouped into 6 categories that comprised overall CVD risk assessment and management (n = 4), and specific interventions aimed at reducing CVD risk including RA control with disease modifying anti-rheumatic drugs, glucocorticoids and non-steroidal anti-inflammatory drugs (n = 3), lipid lowering agents (n = 8), antihypertensive drugs (n = 1), low dose aspirin (n = 1) and lifestyle modification (n = 1). Each point to consider differs partially or completely from recommendations previously reported for CVD risk management in RA patients from high income populations. Currently recommended CVD risk calculators do not reliably identify South African black RA patients with very high-risk atherosclerosis as represented by carotid artery plaque presence on ultrasound. Conclusions: Our findings indicate that optimal cardiovascular risk management likely differs substantially in RA patients from low or middle income compared to high income populations. There is an urgent need for future multicentre longitudinal studies on CVD risk in black African patients with RA
XPO1 Gene Therapy Attenuates Cardiac Dysfunction in Rats with Chronic Induced Myocardial Infarction
Transcriptomic signature of XPO1 was highly expressed and inversely related to left ventricular function in ischemic cardiomyopathy patients. We hypothesized that treatment with AAV9-shXPO1 attenuates left ventricular dysfunction and remodeling in a myocardial infarction rat model. We induced myocardial infarction by coronary ligation in Sprague-Dawley rats (n = 10), which received AAV9-shXPO1 (n = 5) or placebo AAV9-scramble (n = 5) treatment. Serial echocardiographic assessment was performed throughout the study. After myocardial infarction, AAV9-shXPO1-treated rats showed partial recovery of left ventricular fractional shortening (16.8 +/- 2.8 vs 24.6 +/- 4.1%, P < 0.05) and a maintained left ventricular dimension (6.17 +/- 0.95 vs 4.70 +/- 0.93 mm, P < 0.05), which was not observed in non-treated rats. Furthermore, lower levels of EXP-1 (P < 0.05) and lower collagen fibers and fibrosis in cardiac tissue were observed. However, no differences were found in the IL-6 or TNFR1 plasma levels of the myocardium of AAV9-shXPO1 rats. AAV9-shXPO1 administration attenuates cardiac dysfunction and remodeling in rats after myocardial infarction, producing the gene silencing of XPO1
Expansion of different subpopulations of CD26 ?/low T cells in allergic and non-allergic asthmatics
CD26 displays variable levels between effector (TH17 >> TH1 > TH2 > Treg) and naive/memory (memory > naive) CD4(+) T lymphocytes. Besides, IL-6/IL(-)6R is associated with TH17-differentiation and asthma severity. Allergic/atopic asthma (AA) is dominated by TH2 responses, while TH17 immunity might either modulate the TH2-dependent inflammation in AA or be an important mechanism boosting non-allergic asthma (NAA). Therefore, in this work we have compared the expression of CD26 and CD126 (IL-6Ralpha) in lymphocytes from different groups of donors: allergic (AA) and non-allergic (NAA) asthma, rhinitis, and healthy subjects. For this purpose, flow cytometry, haematological/biochemical, and in vitro proliferation assays were performed. Our results show a strong CD26-CD126 correlation and an over-representation of CD26(-) subsets with a highly-differentiated effector phenotype in AA (CD4(+)CD26(-/low) T cells) and NAA (CD4(-)CD26(-) gammadelta-T cells). In addition, we found that circulating levels of CD26 (sCD26) were reduced in both AA and NAA, while loss of CD126 expression on different leukocytes correlated with higher disease severity. Finally, selective inhibition of CD26-mRNA translation led to enhanced T cell proliferation in vitro. These findings support that CD26 down-modulation could play a role in facilitating the expansion of highly-differentiated effector T cell subsets in asthma
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
AIMS: The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin-kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (>/=1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. METHODS AND RESULTS: Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77-0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77-0.99; P = 0.032) and Type 2 (0.77, 0.61-0.97; P = 0.025), but not Type 4 MI. CONCLUSION: After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types
On new gravitational instantons describing creation of brane-worlds
By considering 5--dimensional cosmological models with a bulk filled with a
pressureless scalar field; equivalently dust matter, and a negative
cosmological constant, we have found a regular instantonic solution which is
free from any singularity at the origin of the extra--coordinate. This
instanton describes 5--dimensional asymptotically anti de Sitter wormhole, when
the bulk has a topology R times S^4. Compactified brane-world instantons which
are built up from such instantonic solution describe either a single brane or a
string of branes. Their analytical continuation to the pseudo--Riemannian
metric can give rise to either 4-dimensional inflating branes or solutions with
the same dynamical behaviour for extra--dimension and branes, in addition to
multitemporal solutions. Dust brane-world models with arbitrary dimensions (D
>= 5) as well as other spatial topologies are also briefly discussed.Comment: 11 pages, 3 figures, LaTeX2e, accepted for publication in Classical
and Quantum Gravit
A hyperbolic slicing condition adapted to Killing fields and densitized lapses
We study the properties of a modified version of the Bona-Masso family of
hyperbolic slicing conditions. This modified slicing condition has two very
important features: In the first place, it guarantees that if a spacetime is
static or stationary, and one starts the evolution in a coordinate system in
which the metric coefficients are already time independent, then they will
remain time independent during the subsequent evolution, {\em i.e.} the lapse
will not evolve and will therefore not drive the time lines away from the
Killing direction. Second, the modified condition is naturally adapted to the
use of a densitized lapse as a fundamental variable, which in turn makes it a
good candidate for a dynamic slicing condition that can be used in conjunction
with some recently proposed hyperbolic reformulations of the Einstein evolution
equations.Comment: 11 page
Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry
Mass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence—de novo sequencing—can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula ‘Jemalong A17’ root nodules is presented. Among them, sucrose synthase (SuSy; EC 2.4.1.13), one of the central enzymes in sucrose cleavage in root nodules, has been further characterized and the relative phosphorylation state of the three most abundant isoforms has been quantified. De novo sequencing provided sequence information of a so far unidentified peptide, most probably belonging to SuSy2, the second most abundant isoform in M. truncatula root nodules. TiO2-phosphopeptide enrichment led to the identification of not only a phosphorylation site at Ser11 in SuSy1, but also of several novel phosphorylation sites present in other root nodule proteins such as alkaline invertase (AI; EC 3.2.1.26) and an RNA-binding protein
Subclinical Inflammation and Diabetic Polyneuropathy: MONICA/KORA Survey F3 (Augsburg, Germany)
Subclinical inflammation represents a risk factor of type 2 diabetes and several diabetes complications, but data on diabetic neuropathies are scarce. Therefore, we investigated whether circulating concentrations of acute-phase proteins, cytokines, and chemokines differ among diabetic patients with or without diabetic polyneuropathy. RESEARCH DESIGN AND METHODS - We measured 10 markers of subclinical inflammation in 227 type 2 diabetic patients with diabetic polyneuropathy who participated in the population-based MONICA/KORA Survey F3 (2004-2005; Augsburg, Germany). Diabetic polyneuropathy was diagnosed using the Michigan Neuropathy Screening Instrument (MNSI). RESULTS - After adjustment for multiple confounders, high levels of C-reactive protein and interleukin (IL)-6 were most consistently associated with diabetic polyneuropathy, high MNSI score, and specific neuropathic deficits, whereas some inverse associations were seen for IL-18. CONCLUSIONS - This study shows that subclinical inflammation is associated with diabetic polyneuropathy and neuropathic impairments. This association appears rather specific because only certain immune mediators and impairments are involved
- …