40,851 research outputs found

    What can we infer about the underlying physics from burst distributions observed in an RMHD simulation ?

    Full text link
    We determine that the sizes of bursts in mean-square current density in a reduced magnetohydrodynamic (RMHD)simulation follow power-law probability density function (PDF). The PDFs for burst durations and waiting time between bursts are clearly not exponential and could also be power-law. This suffices to distinguish their behaviour from the original Bak et al. sandpile model which had exponential waiting time PDFs. However, it is not sufficient to distinguish between turbulence, some other SOC-like models, and other red noise sources.Comment: In press, Planetary and Space Science. Proceedings of a session at European Geophysical Society General Assembly, Nice, 200

    An Analytic and Probabilistic Approach to the Problem of Matroid Representibility

    Full text link
    We introduce various quantities that can be defined for an arbitrary matroid, and show that certain conditions on these quantities imply that a matroid is not representable over Fq\mathbb{F}_q. Mostly, for a matroid of rank rr, we examine the proportion of size-(r−k)(r-k) subsets that are dependent, and give bounds, in terms of the cardinality of the matroid and qq a prime power, for this proportion, below which the matroid is not representable over Fq\mathbb{F}_q. We also explore connections between the defined quantities and demonstrate that they can be used to prove that random matrices have high proportions of subsets of columns independent

    Thin Films of 3He -- Implications on the Identification of 3 He -A

    Full text link
    Recently the identification of 3He-A with the axial state has been questioned. It is suggested that the A-phase can actually be in the axiplanar state. We point out in the present paper that experiments in a film geometry may be useful to distinguish the above two possibilities. In particular a second order phase transition between an axial and an axiplanar state would occur as a function of thickness or temperature.Comment: 3 pages, no figures latex- revtex aps accepted by J. of Low Temperature Physic

    What do gas-rich galaxies actually tell us about modified Newtonian dynamics?

    Full text link
    It has recently been claimed that measurements of the baryonic Tully-Fisher relation (BTFR), a power-law relationship between the observed baryonic masses and outer rotation velocities of galaxies, support the predictions of modified Newtonian dynamics for the slope and scatter in the relation, while challenging the cold dark matter (CDM) paradigm. We investigate these claims, and find that: 1) the scatter in the data used to determine the BTFR is in conflict with observational uncertainties on the data; 2) these data do not make strong distinctions regarding the best-fit BTFR parameters; 3) the literature contains a wide variety of measurements of the BTFR, many of which are discrepant with the recent results; and 4) the claimed CDM "prediction" for the BTFR is a gross oversimplification of the complex galaxy-scale physics involved. We conclude that the BTFR is currently untrustworthy as a test of CDM.Comment: 5 pages, 2 figures; minor revisions to match published versio

    Nuclear Spins as Quantum Memory in Semiconductor Nanostructures

    Full text link
    We theoretically consider solid state nuclear spins in a semiconductor nanostructure environment as long-lived, high-fidelity quantum memory. In particular, we calculate, in the limit of a strong applied magnetic field, the fidelity versus time of P donor nuclear spins in random bath environments of Si and GaAs, and the lifetime of excited intrinsic spins in polarized Si and GaAs environments. In the former situation, the nuclear spin dephases due to spectral diffusion induced by the dipolar interaction among nuclei in the bath. We calculate the decay of nuclear spin quantum memory in the context of Hahn and Carr-Purcell-Meiboom-Gill (CPMG) refocused spin echoes using a formally exact cluster expansion technique which has previously been successful in dealing with electron spin dephasing in a solid state nuclear spin bath. With decoherence dominated by transverse dephasing (T2), we find it feasible to maintain high fidelity (losses of less than 10^{-6}) quantum memory on nuclear spins for times of the order of 100 microseconds (GaAs:P) and 1 to 2 milliseconds (natural Si:P) using CPMG pulse sequences of just a few (~2-4) applied pulses. We also consider the complementary situation of a central flipped intrinsic nuclear spin in a bath of completely polarized nuclear spins where decoherence is caused by the direct flip-flop of the central spin with spins in the bath. Exact numerical calculations that include a sufficiently large neighborhood of surrounding nuclei show lifetimes on the order of 1-5 ms for both GaAs and natural Si. Our calculated nuclear spin coherence times may have significance for solid state quantum computer architectures using localized electron spins in semiconductors where nuclear spins have been proposed for quantum memory storage

    Feline Hypertrophic Cardiomyopathy: A Spontaneous Large Animal Model of Human HCM.

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a common disease in pet cats, affecting 10-15% of the pet cat population. The similarity to human HCM, the rapid progression of disease, and the defined and readily determined endpoints of feline HCM make it an excellent natural model that is genotypically and phenotypically similar to human HCM. The Maine Coon and Ragdoll cats are particularly valuable models of HCM because of myosin binding protein-C mutations and even higher disease incidence compared to the overall feline population. The cat overcomes many of the limitations of rodent HCM models, and can provide enhanced translation of information from in vitro and induced small animal models to human clinical trials. Physicians and veterinarians working together in a collaborative and interdisciplinary approach can accelerate the discovery of more effective treatments for this and other cardiovascular diseases affecting human and veterinary patients

    Magneto-optics in pure and defective Ga_{1-x}Mn_xAs from first-principles

    Full text link
    The magneto-optical properties of Ga1−x_{1-x}Mnx_{x}As including their most common defects were investigated with precise first--principles density-functional FLAPW calculations in order to: {\em i}) elucidate the origin of the features in the Kerr spectra in terms of the underlying electronic structure; {\em ii}) perform an accurate comparison with experiments; and {\em iii}) understand the role of the Mn concentration and occupied sites in shaping the spectra. In the substitutional case, our results show that most of the features have an interband origin and are only slightly affected by Drude--like contributions, even at low photon energies. While not strongly affected by the Mn concentration for the intermediately diluted range (x∼x\sim 10%), the Kerr factor shows a marked minimum (up to 1.5o^o) occurring at a photon energy of ∼\sim 0.5 eV. For interstitial Mn, the calculated results bear a striking resemblance to the experimental spectra, pointing to the comparison between simulated and experimental Kerr angles as a valid tool to distinguish different defects in the diluted magnetic semiconductors framework.Comment: 10 pages including 2 figures, submitted to Phys. Rev.
    • …
    corecore