7,511 research outputs found
The use and re-use of unsustainable groundwater for irrigation: A global budget
Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted by reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by backsim600 km3 yr−1. These findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture
Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles
The Dust Detector System onboard Galileo records dust impacts in the Jupiter
system. Impact events are classified into four quality classes. Class 3 -- our
highest quality class -- has always been noise-free and, therefore, contains
only true dust impacts. Depending on the noise environment, class 2 are dust
impacts or noise. Within from Jupiter (Jupiter radius, ) class 2 shows clear indications for contamination by noise. We analyse the
dust data from Galileo's prime Jupiter mission (1996 and 1997), separate dust
impacts from noise events and derive a complete denoised set of Galileo dust
data (class 2 and class 3). Collimated streams of nanometer-sized dust
particles which have been detected throughout the Jovian system (Gr\"un et al.
1998, JGR, 103, 20011-20022) are used to analyse the sensitive area and the
field of view of the dust detector itself. The sensitive area for stream
particles which trigger class 3 events is . This is almost a
factor of ten smaller than the total sensitive area for class 2 impacts (1,000
cm^2). Correspondingly, the field of view of the detector for class 3 stream
particles is reduced from to . The magnetometer boom
and other instruments on board Galileo cause a significant shadowing of the
field of view of the dust sensor. Our analysis is supplementary to ground
calibrations of the dust instrument because the low masses and high speeds of
the stream particles could not be achieved in the laboratory. Our new results
have important consequences for the analysis of dust in the Jupiter system.Comment: Planetary and Space Science, accepted, 11 figures, 3 table
EFFECTS OF LAND COVER, WATER REDISTRIBUTION, AND TEMPERATURE ON ECOSYSTEM PROCESSES IN THE SOUTH PLATTE BASIN
Over one‐third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation‐related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin‐wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin‐wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of \u3c500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000–1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects
Quantifying and mapping China’s crop yield gains from sustainable and unsustainable irrigation water use 1981-2000
Sensitivity of a high‐elevation rocky mountain watershed to altered climate and CO2
We explored the hydrologic and ecological responses of a headwater mountain catchment, Loch Vale watershed, to climate change and doubling of atmospheric CO2 scenarios using the Regional Hydro‐Ecological Simulation System (RHESSys). A slight (2°C) cooling, comparable to conditions observed over the past 40 years, led to greater snowpack and slightly less runoff, evaporation, transpiration, and plant productivity. An increase of 2°C yielded the opposite response, but model output for an increase of 4°C showed dramatic changes in timing of hydrologic responses. The snowpack was reduced by 50%, and runoff and soil water increased and occurred 4–5 weeks earlier with 4°C warming. Alpine tundra photosynthetic rates responded more to warmer and wetter conditions than subalpine forest, but subalpine forest showed a greater response to doubling of atmospheric CO2 than tundra. Even though water use efficiency increased with the double CO2 scenario, this had little effect on basin‐wide runoff because the catchment is largely unvegetated. Changes in winter and spring climate conditions were more important to hydrologic and vegetation dynamics than changes that occurred during summer
Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cascao, I., Lammers, M. O., Prieto, R., Santos, R. S., & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Scientific Reports, 10(1), (2020): 3610, doi:10.1038/s41598-020-60441-4.Several seamounts have been identified as hotspots of marine life in the Azores, acting as feeding stations for top predators, including cetaceans. Passive acoustic monitoring is an efficient tool to study temporal variations in the occurrence and behaviour of vocalizing cetacean species. We deployed bottom-moored Ecological Acoustic Recorders (EARs) to investigate the temporal patterns in acoustic presence and foraging activity of oceanic dolphins at two seamounts (Condor and Gigante) in the Azores. Data were collected in March–May 2008 and April 2010–February 2011. Dolphins were present year round and nearly every day at both seamounts. Foraging signals (buzzes and bray calls) were recorded in >87% of the days dolphin were present. There was a strong diel pattern in dolphin acoustic occurrence and behaviour, with higher detections of foraging and echolocation vocalizations during the night and of social signals during daylight hours. Acoustic data demonstrate that small dolphins consistently use Condor and Gigante seamounts to forage at night. These results suggest that these seamounts likely are important feeding areas for dolphins. This study contributes to a better understanding of the feeding ecology of oceanic dolphins and provides new insights into the role of seamount habitats for top predators.This research was supported by the Fundação para a Ciência e a Tecnologia (FCT), Azores 2020 Operational Programme and the Fundo Regional da Ciência e Tecnologia (FRCT), through research projects TRACE (PTDC/MAR/74071/2006), MAPCET (M2.1.2/F/012/2011), FCT-Exploratory (IF/00943/2013/CP1199/CT0001), WATCH IT (Acores-01-0145-FEDER-000057) and MISTIC SEAS II (GA11.0661/2017/750679/SUB/ENV.C2), co-funded by FEDER, COMPETE, QREN, POPH, European Social Fund (ESF), the Portuguese Ministry for Science and Education, and EU-DG/ENV. The Azores 2020 Operational Programme is funded by the community structural funds ERDF and ESF. Funds were also provided by FCT to MARE, through the strategic project UID/MAR/04292/2013. MAS was supported through a FCT Investigator contract funded by POPH, QREN, ESF and the Portuguese Ministry for Science and Education (IF/00943/2013). IC was supported by a FCT doctoral grant (SFRH/BD/41192/2007) and RP by a FCT postdoctoral grant (SFRH/BPD/108007/2015). We thank the field and crew teams for assisting with the many deployments and recoveries of the EARs. Special thanks to Norberto Serpa for helping with mooring design, Ken Sexton and Michael Richlen for their roles in manufacturing the EARs, Sergio Gomes for building the battery packs, and Lisa Munger for adapting Triton for EAR data analysis
Snowmass 2001: Jet Energy Flow Project
Conventional cone jet algorithms arose from heuristic considerations of LO
hard scattering coupled to independent showering. These algorithms implicitly
assume that the final states of individual events can be mapped onto a unique
set of jets that are in turn associated with a unique set of underlying hard
scattering partons. Thus each final state hadron is assigned to a unique
underlying parton. The Jet Energy Flow (JEF) analysis described here does not
make such assumptions. The final states of individual events are instead
described in terms of flow distributions of hadronic energy. Quantities of
physical interest are constructed from the energy flow distribution summed over
all events. The resulting analysis is less sensitive to higher order
perturbative corrections and the impact of showering and hadronization than the
standard cone algorithms.Comment: REVTeX4, 13 pages, 6 figures; Contribution to the P5 Working Group on
QCD and Strong Interactions at Snowmass 200
Simulations of snow distribution and hydrology in a mountain basin
We applied a version of the Regional Hydro‐Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind‐driven sublimation to Loch Vale Watershed (LVWS), an alpine‐subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind‐driven sublimation was necessary to predict moisture losses
- …
