2,015 research outputs found

    Determining the Dependence Structure of Multivariate Extremes

    Full text link
    In multivariate extreme value analysis, the nature of the extremal dependence between variables should be considered when selecting appropriate statistical models. Interest often lies with determining which subsets of variables can take their largest values simultaneously, while the others are of smaller order. Our approach to this problem exploits hidden regular variation properties on a collection of non-standard cones and provides a new set of indices that reveal aspects of the extremal dependence structure not available through existing measures of dependence. We derive theoretical properties of these indices, demonstrate their value through a series of examples, and develop methods of inference that also estimate the proportion of extremal mass associated with each cone. We apply the methods to UK river flows, estimating the probabilities of different subsets of sites being large simultaneously

    Conditional Modelling of Spatio-Temporal Extremes for Red Sea Surface Temperatures

    Full text link
    Recent extreme value theory literature has seen significant emphasis on the modelling of spatial extremes, with comparatively little consideration of spatio-temporal extensions. This neglects an important feature of extreme events: their evolution over time. Many existing models for the spatial case are limited by the number of locations they can handle; this impedes extension to space-time settings, where models for higher dimensions are required. Moreover, the spatio-temporal models that do exist are restrictive in terms of the range of extremal dependence types they can capture. Recently, conditional approaches for studying multivariate and spatial extremes have been proposed, which enjoy benefits in terms of computational efficiency and an ability to capture both asymptotic dependence and asymptotic independence. We extend this class of models to a spatio-temporal setting, conditioning on the occurrence of an extreme value at a single space-time location. We adopt a composite likelihood approach for inference, which combines information from full likelihoods across multiple space-time conditioning locations. We apply our model to Red Sea surface temperatures, show that it fits well using a range of diagnostic plots, and demonstrate how it can be used to assess the risk of coral bleaching attributed to high water temperatures over consecutive days

    High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and the SPDE approach

    Get PDF
    The conditional extremes framework allows for event-based stochastic modeling of dependent extremes, and has recently been extended to spatial and spatio-temporal settings. After standardizing the marginal distributions and applying an appropriate linear normalization, certain non-stationary Gaussian processes can be used as asymptotically-motivated models for the process conditioned on threshold exceedances at a fixed reference location and time. In this work, we adopt a Bayesian perspective by implementing estimation through the integrated nested Laplace approximation (INLA), allowing for novel and flexible semi-parametric specifications of the Gaussian mean function. By using Gauss-Markov approximations of the Mat\'ern covariance function (known as the Stochastic Partial Differential Equation approach) at a latent stage of the model, likelihood-based inference becomes feasible even with thousands of observed locations. We explain how constraints on the spatial and spatio-temporal Gaussian processes, arising from the conditioning mechanism, can be implemented through the latent variable approach without losing the computationally convenient Markov property. We discuss tools for the comparison of models via their posterior distributions, and illustrate the flexibility of the approach with gridded Red Sea surface temperature data at over 6,000 observed locations. Posterior sampling is exploited to study the probability distribution of cluster functionals of spatial and spatio-temporal extreme episodes

    Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment

    Full text link
    We develop a theoretical analysis of four-wave mixing used to generate photon pairs useful for quantum information processing. The analysis applies to a single mode microstructured fibre pumped by an ultra-short coherent pulse in the normal dispersion region. Given the values of the optical propagation constant inside the fibre, we can estimate the created number of photon pairs per pulse, their central wavelength and their respective bandwidth. We use the experimental results from a picosecond source of correlated photon pairs using a micro-structured fibre to validate the model. The fibre is pumped in the normal dispersion regime at 708nm and phase matching is satisfied for widely spaced parametric wavelengths of 586nm and 894nm. We measure the number of photons per pulse using a loss-independent coincidence scheme and compare the results with the theoretical expectation. We show a good agreement between the theoretical expectations and the experimental results for various fibre lengths and pump powers.Comment: 23 pages, 9 figure

    An All Optical Fibre Quantum Controlled-NOT Gate

    Full text link
    We report the first experimental demonstration of an optical controlled-NOT gate constructed entirely in fibre. We operate the gate using two heralded optical fibre single photon sources and find an average logical fidelity of 90% and an average process fidelity of 0.83<F<0.91. On the basis of a simple model we are able to conclude that imperfections are primarily due to the photon sources, meaning that the gate itself works with very high fidelity.Comment: 4 pages, 4 figures, comments welcom

    Two-photon interference between disparate sources for quantum networking

    Get PDF
    Quantum networks involve entanglement sharing between multiple users. Ideally, any two users would be able to connect regardless of the type of photon source they employ, provided they fulfill the requirements for two-photon interference. From a theoretical perspective, photons coming from different origins can interfere with a perfect visibility, provided they are made indistinguishable in all degrees of freedom. Previous experimental demonstrations of such a scenario have been limited to photon wavelengths below 900 nm, unsuitable for long distance communication, and suffered from low interference visibility. We report two-photon interference using two disparate heralded single photon sources, which involve different nonlinear effects, operating in the telecom wavelength range. The measured visibility of the two-photon interference is 80+/-4%, which paves the way to hybrid universal quantum networks

    The narrative potential of the British Birth Cohort Studies

    Get PDF
    This paper draws attention to the narrative potential of longitudinal studies such as the British Birth Cohort Studies (BBCS), and explores the possibility of creating narrative case histories and conducting narrative analysis based on information available from the studies. The BBCS have historically adopted a quantitative research design and used structured interviews and questionnaires to collect data from large samples of individuals born in specific years. However, the longitudinal nature of these studies means that they follow the same sample of individuals from birth through childhood into adult life, and this leads to the creation of data that can be understood as a quantitative auto/biography

    Maximal Sharing in the Lambda Calculus with letrec

    Full text link
    Increasing sharing in programs is desirable to compactify the code, and to avoid duplication of reduction work at run-time, thereby speeding up execution. We show how a maximal degree of sharing can be obtained for programs expressed as terms in the lambda calculus with letrec. We introduce a notion of `maximal compactness' for lambda-letrec-terms among all terms with the same infinite unfolding. Instead of defined purely syntactically, this notion is based on a graph semantics. lambda-letrec-terms are interpreted as first-order term graphs so that unfolding equivalence between terms is preserved and reflected through bisimilarity of the term graph interpretations. Compactness of the term graphs can then be compared via functional bisimulation. We describe practical and efficient methods for the following two problems: transforming a lambda-letrec-term into a maximally compact form; and deciding whether two lambda-letrec-terms are unfolding-equivalent. The transformation of a lambda-letrec-term LL into maximally compact form L0L_0 proceeds in three steps: (i) translate L into its term graph G=[[L]]G = [[ L ]]; (ii) compute the maximally shared form of GG as its bisimulation collapse G0G_0; (iii) read back a lambda-letrec-term L0L_0 from the term graph G0G_0 with the property [[L0]]=G0[[ L_0 ]] = G_0. This guarantees that L0L_0 and LL have the same unfolding, and that L0L_0 exhibits maximal sharing. The procedure for deciding whether two given lambda-letrec-terms L1L_1 and L2L_2 are unfolding-equivalent computes their term graph interpretations [[L1]][[ L_1 ]] and [[L2]][[ L_2 ]], and checks whether these term graphs are bisimilar. For illustration, we also provide a readily usable implementation.Comment: 18 pages, plus 19 pages appendi

    Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein

    Get PDF
    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe
    • …
    corecore