119,433 research outputs found

    Density-Dependent Synthetic Gauge Fields Using Periodically Modulated Interactions

    Get PDF
    We show that density-dependent synthetic gauge fields may be engineered by combining periodically modu- lated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to a density- dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between the created gauge field and the broken sublattice symmetry results, as well, in an intriguing behavior at vanishing interactions, characterized by the appearance of a fractional Mott insulator.Comment: 5 pages, 5 figure

    Detection of a single-charge defect in a metal-oxide-semiconductor structure using vertically coupled Al and Si single-electron transistors

    Full text link
    An Al-AlO_x-Al single-electron transistor (SET) acting as the gate of a narrow (~ 100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET) can induce a vertically aligned Si SET at the Si/SiO_2 interface near the MOSFET channel conductance threshold. By using such a vertically coupled Al and Si SET system, we have detected a single-charge defect which is tunnel-coupled to the Si SET. By solving a simple electrostatic model, the fractions of each coupling capacitance associated with the defect are extracted. The results reveal that the defect is not a large puddle or metal island, but its size is rather small, corresponding to a sphere with a radius less than 1 nm. The small size of the defect suggests it is most likely a single-charge trap at the Si/SiO_2 interface. Based on the ratios of the coupling capacitances, the interface trap is estimated to be about 20 nm away from the Si SET.Comment: 5 pages and 5 figure

    Quantum Thermalization With Couplings

    Full text link
    We study the role of the system-bath coupling for the generalized canonical thermalization [S. Popescu, et al., Nature Physics 2,754(2006) and S. Goldstein et al., Phys. Rev. Lett. 96, 050403(2006)] that reduces almost all the pure states of the "universe" [formed by a system S plus its surrounding heat bath BB] to a canonical equilibrium state of S. We present an exactly solvable, but universal model for this kinematic thermalization with an explicit consideration about the energy shell deformation due to the interaction between S and B. By calculating the state numbers of the "universe" and its subsystems S and B in various deformed energy shells, it is found that, for the overwhelming majority of the "universe" states (they are entangled at least), the diagonal canonical typicality remains robust with respect to finite interactions between S and B. Particularly, the kinematic decoherence is utilized here to account for the vanishing of the off-diagonal elements of the reduced density matrix of S. It is pointed out that the non-vanishing off-diagonal elements due to the finiteness of bath and the stronger system-bath interaction might offer more novelties of the quantum thermalization.Comment: 4 pages, 2 figure

    Dipolar effect in coherent spin mixing of two atoms in a single optical lattice site

    Full text link
    We show that atomic dipolar effects are detectable in the system that recently demonstrated two-atom coherent spin dynamics within individual lattice sites of a Mott state. Based on a two-state approximation for the two-atom internal states and relying on a variational approach, we have estimated the spin dipolar effect. Despite the absolute weakness of the dipole-dipole interaction, it is shown that it leads to experimentally observable effects in the spin mixing dynamics.Comment: 4 pages, 3 color eps figures, to appear in Phys. Rev. Let
    corecore