27,449 research outputs found

    WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium

    Get PDF
    A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%. With [S II]/[N II] fairly constant over a large range of H-Alpha intensities, the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S+/S++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc, confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided here, original PS figures at link below. Accepted for publication in ApJ. More information about the WHAM project can be found at http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now contains the proper points. No other changes have been mad

    Interstellar H-Alpha Line Profiles toward HD 93521 and the Lockman Window

    Full text link
    We have used the Wisconsin H-Alpha Mapper (WHAM) facility to measure the interstellar H-Alpha emission toward the high Galactic latitude O star HD 93521 (l = 183.1, b = +62.2). Three emission components were detected having radial velocities of -10 km s^{-1}, -51 km s^{-1}, and -90 km s^{-1} with respect to the local standard of rest (LSR) and H-Alpha intensities of 0.20 R, 0.15 R, and 0.023 R, respectively, corresponding to emission measures of 0.55 cm^{-6} pc, 0.42 cm^{-6} pc, and 0.06 cm^{-6} pc. We have also detected an H-Alpha emission component at -1 km s^{-1} (LSR) with an intensity of 0.20 R (0.55 cm^{-6} pc) toward the direction l = 148.5, b = +53.0, which lies in the region of exceptionally low H I column density known as the Lockman Window. In addition, we studied the direction l = 163.5, b = +53.5. Upper limits on the possible intensity of Galactic emission toward this direction are 0.11 R at the LSR and 0.06 R at -50 km s^{-1}. We also detected and characterized twelve faint (~0.03-0.15 R), unidentified atmospheric lines present in WHAM H-Alpha spectra. Lastly, we have used WHAM to obtain [O I] 6300 spectra along the line of sight toward HD 93521. We place an upper limit of 0.060 R on the [O I] intensity of the -51 km s^{-1} component. If the temperature of the gas is 10,000 K within the H-Alpha emitting region, the hydrogen ionization fraction n(H+)/n(H_total) > 0.6.Comment: 23 pages, 4 figures. Acccepted for publication in the 1 Feb issue of The Astronomical Journa

    On the lack of X-ray iron line reverberation in MCG-6-30-15: Implications for the black hole mass and accretion disk structure

    Get PDF
    We use the method of Press, Rybicki & Hewitt (1992) to search for time lags and time leads between different energy bands of the RXTE data for MCG-6-30-15. We tailor our search in order to probe any reverberation signatures of the fluorescent iron Kalpha line that is thought to arise from the inner regions of the black hole accretion disk. In essence, an optimal reconstruction algorithm is applied to the continuum band (2-4keV) light curve which smoothes out noise and interpolates across the data gaps. The reconstructed continuum band light curve can then be folded through trial transfer functions in an attempt to find lags or leads between the continuum band and the iron line band (5-7keV). We find reduced fractional variability in the line band. The spectral analysis of Lee et al. (1999) reveals this to be due to a combination of an apparently constant iron line flux (at least on timescales of few x 10^4s), and flux correlated changes in the photon index. We also find no evidence for iron line reverberation and exclude reverberation delays in the range 0.5-50ksec. This extends the conclusions of Lee et al. and suggests that the iron line flux remains constant on timescales as short as 0.5ksec. The large black hole mass (>10^8Msun) naively suggested by the constancy of the iron line flux is rejected on other grounds. We suggest that the black hole in MCG-6-30-15 has a mass of M_BH~10^6-10^7Msun and that changes in the ionization state of the disk may produce the puzzling spectral variability. Finally, it is found that the 8-15keV band lags the 2-4keV band by 50-100s. This result is used to place constraints on the size and geometry of the Comptonizing medium responsible for the hard X-ray power-law in this AGN.Comment: 11 pages, 13 postscript figures. Accepted for publication in Ap

    Energetic Impact of Jet Inflated Cocoons in Relaxed Galaxy Clusters

    Full text link
    Jets from active galactic nuclei (AGN) in the cores of galaxy clusters have the potential to be a major contributor to the energy budget of the intracluster medium (ICM). To study the dependence of the interaction between the AGN jets and the ICM on the parameters of the jets themselves, we present a parameter survey of two-dimensional (axisymmetric) ideal hydrodynamic models of back-to-back jets injected into a cluster atmosphere (with varying Mach numbers and kinetic luminosities). We follow the passive evolution of the resulting structures for several times longer than the active lifetime of the jet. The simulations fall into roughly two classes, cocoon-bounded and non-cocoon bounded sources. We suggest a correspondence between these two classes and the Faranoff-Riley types. We find that the cocoon-bounded sources inject significantly more entropy into the core regions of the ICM atmosphere, even though the efficiency with which energy is thermalized is independent of the morphological class. In all cases, a large fraction (50--80%) of the energy injected by the jet ends up as gravitational potential energy due to the expansion of the atmosphere.Comment: 12 pages, Accepted for publication in Ap

    Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study

    Get PDF
    Form resistance (Phi) is a dimensionless number expressing how much slower or faster a particle of any form sinks in a fluid medium than the sphere of equivalent volume. Form resistance factors of PVC models of phytoplankton sinking in glycerin were measured in a large aquarium (0.6 x 0.6 x 0.95 m). For cylindrical forms, a positive relationship was found between Phi and length/ width ratio. Coiling decreased Phi in filamentous forms. Form resistance of Asterionella colonies increased from single cells up to 6-celled colonies than remained nearly constant. For Fragilaria crotonensis chains, no such upper limit to Phi was observed in chains of up to 20 cells ( longer ones were not measured). The effect of symmetry on Phi was tested in 1 - 6-celled Asterionella colonies, having variable angles between the cells, and in Tetrastrum staurogeniaeforme coenobia, having different spine arrangements. In all cases, symmetric forms had considerably higher form resistance than asymmetric ones. However, for Pediastrum coenobia with symmetric/asymmetric fenestration, no difference was observed with respect to symmetry. Increasing number and length of spines on Tetrastrum coenobia substantially increased Phi. For a series of Staurastrum forms, a significant positive correlation was found between arm-length/cell-width ratio and Phi: protuberances increased form resistance. Flagellates (Rhodomonas, Gymnodinium) had a Phi 1. The highest value ( Phi = 8.1) was established for a 20-celled Fragilaria crotonensis chain. Possible origin of the so-called 'vital component' ( a factor that shows how much slower viable populations sink than morphologically similar senescent or dead ones) is discussed, as is the role of form resistance in evolution of high diversity of plankton morphologies

    NuSTAR Observations of G11.2–0.3

    Get PDF
    We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2−0.3 and its central pulsar powered pulsar J1811−1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Γ = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Γ = 1.32 ± 0.07 up to 300 keV without evidence of curvature
    • 

    corecore