7,457 research outputs found

    Studies on the Life Cycle and Transmission of \u3ci\u3eCougourdella\u3c/i\u3e Sp., A Microsporidian Parasite of \u3ci\u3eGlossosoma Nigrior\u3c/i\u3e (Trichoptera: Glossosomatidae)

    Get PDF
    The trichopteran Glossosoma nigrior, the dominant benthic invertebrate grazer in Michigan trout streams, hosts a microsporidian (Protozoa) pathogen, Cougourdella sp., which strongly regulates the population density of larvae in the stream. In order to better understand the interactions between these two species, two possible modes of pathogen transmission, oral and transovum, were investigated. While both sexes of adult G. nigrior were found to be infected with mature environmental spores, spores were not found associated with reproductive tissue. This suggests that transovum transmission does not occur in this system. Glossosoma nigrior, when ex- posed to viable spores taken from infected larvae, did not produce Cougourdella sp. infections, which suggests that oral transmission also does not occur. It is possible that an intermediate host is required

    Music Appreciation Programs for Rural Clubs

    Get PDF
    Music appreciation consists of two essentials, listening to and actual participation in musical expression. Both involve musical experience. Music can hardly be thought of as something to be talked about or taught. It must be experienced. The most musical community is that community which has made music a vital experience in the life of its people. This can be brought about in the rural communities of South Dakota. (See more in text.

    Limitation of entanglement due to spatial qubit separation

    Full text link
    We consider spatially separated qubits coupled to a thermal bosonic field that causes pure dephasing. Our focus is on the entanglement of two Bell states which for vanishing separation are known as robust and fragile entangled states. The reduced two-qubit dynamics is solved exactly and explicitly. Our results allow us to gain information about the robustness of two-qubit decoherence-free subspaces with respect to physical parameters such as temperature, qubit-bath coupling strength and spatial separation of the qubits. Moreover, we clarify the relation between single-qubit coherence and two-qubit entanglement and identify parameter regimes in which the terms robust and fragile are no longer appropriate.Comment: 7 pages, 3 figures; revised version, accepted for publication in Europhys. Let

    Optical/Near-Infrared Imaging of Infrared-Excess Palomar-Green QSOs

    Get PDF
    Ground-based high spatial-resolution (FWHM < 0.3-0.8") optical and near-infrared imaging (0.4-2.2um) is presented for a complete sample of optically selected Palomar-Green QSOs with far-infrared excesses at least as great as those of "warm" AGN-like ultraluminous infrared galaxies (L_ir/L_big-blue-bump > 0.46). In all cases, the host galaxies of the QSOs were detected and most have discernable two-dimensional structure. The QSO host galaxies and the QSO nuclei are similar in magnitude at H-band. H-band luminosities of the hosts range from 0.5-7.5 L* with a mean of 2.3 L*, and are consistent with those found in ULIGs. Both the QSO nuclei and the host galaxies have near-infrared excesses, which may be the result of dust associated with the nucleus and of recent dusty star formation in the host. These results suggest that some, but not all, optically-selected QSOs may have evolved from an infrared-active state triggered by the merger of two similarly-sized L* galaxies, in a manner similar to that of the ultraluminous infrared galaxies.Comment: Aastex format, 38 pages, 4 tables, 10 figures. Higher quality figures are available in JPG forma

    Coherent charge transport through molecular wires: "Exciton blocking" and current from electronic excitations in the wire

    Full text link
    We consider exciton effects on current in molecular nanojunctions, using a model comprising a two two-level sites bridge connecting free electron reservoirs. Expanding the density operator in the many-electron eigenstates of the uncoupled sites, we obtain a 16X16 density matrix in the bridge subspace whose dynamics is governed by Liuoville equation that takes into account interactions on the bridge as well as electron injection and damping to and from the leads. Our consideration can be considerably simplified by using the pseudospin description based on the symmetry properties of Lie group SU(2). We study the influence of the bias voltage, the Coulomb repulsion and the energy-transfer interactions on the steady-state current and in particular focus on the effect of the excitonic interaction between bridge sites. Our calculations show that in case of non-interacting electrons this interaction leads to reduction in the current at high voltage for a homodimer bridge. In other words, we predict the effect of \textquotedblleft exciton\textquotedblright blocking. The effect of \textquotedblleft exciton\textquotedblright blocking is modified for a heterodimer bridge, and disappears for strong Coulomb repulsion at sites. In the latter case the exciton type interactions can open new channels for electronic conduction. In particular, in the case of strong Coulomb repulsion, conduction exists even when the electronic connectivity does not exist.Comment: 14 pages, 15 figure

    Electric-Field Gradient at Cd Impurities in In2o3. A FLAPW Study

    Full text link
    We report an ab initio study of the electric-field gradient tensor (EFG) at Cd impurities located at both inequivalent cationic sites in the semiconductor In2O3. Calculations were performed with the FLAPW method, that allows us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host lattice in a fully self-consistent way. From our results for the EFG (in excellent agreement with the experiments), it is clear that the problem of the EFG at impurities in In2O3 cannot be described by the point-charge model and antishielding factors.Comment: 4 pages, 2 figures, and 2 table

    Nuclear Magnetic Resonance and Hyperfine Structure

    Get PDF
    Contains research objectives and reports on two research projects

    Ray splitting in paraxial optical cavities

    Full text link
    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.Comment: 13 pages, 7 figures, 1 tabl

    Survival Probability of a Doorway State in regular and chaotic environments

    Full text link
    We calculate survival probability of a special state which couples randomly to a regular or chaotic environment. The environment is modelled by a suitably chosen random matrix ensemble. The exact results exhibit non--perturbative features as revival of probability and non--ergodicity. The role of background complexity and of coupling complexity is discussed as well.Comment: 19 pages 5 Figure

    A Multiplicity Census of Young Stars in Chamaeleon I

    Full text link
    We present the results of a multiplicity survey of 126 stars spanning ~0.1-3 solar masses in the ~2-Myr-old Chamaeleon I star-forming region, based on adaptive optics imaging with the ESO Very Large Telescope. Our observations have revealed 30 binaries and 6 triples, of which 19 and 4, respectively, are new discoveries. The overall multiplicity fraction we find for Cha I (~30%) is similar to those reported for other dispersed young associations, but significantly higher than seen in denser clusters and the field, for comparable samples. Both the frequency and the maximum separation of Cha I binaries decline with decreasing mass, while the mass ratios approach unity; conversely, tighter pairs are more likely to be equal mass. We confirm that brown dwarf companions to stars are rare, even at young ages at wide separations. Based on follow-up spectroscopy of two low-mass substellar companion candidates, we conclude that both are likely background stars. The overall multiplicity fraction in Cha I is in rough agreement with numerical simulations of cloud collapse and fragmentation, but its observed mass dependence is less steep than predicted. The paucity of higher-order multiples, in particular, provides a stringent constraint on the simulations, and seems to indicate a low level of turbulence in the prestellar cores in Cha I.Comment: Accepted for publication in Ap
    • …
    corecore