1,424 research outputs found

    Replica-symmetric solutions of a dilute Ising ferromagnet in a random field

    Full text link
    We use the replica method in order to obtain an expression for the variational free energy of an Ising ferromagnet on a Viana-Bray lattice in the presence of random external fields. Introducing a global order parameter, in the replica-symmetric context, the problem is reduced to the analysis of the solutions of a nonlinear integral equation. At zero temperature, and under some restrictions on the form of the random fields, we are able to perform a detailed analysis of stability of the replica-symmetric solutions. In contrast to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a uniform field, the paramagnetic solution is fully stable in a sufficiently large random field

    High-field Electron Spin Resonance of Cu_{1-x}Zn_{x}GeO_{3}

    Full text link
    High-Field Electron Spin Resonance measurements were made on powder samples of Cu_{1-x}Zn_{x}GeO_{3} (x=0.00, 0.01, 0.02, 0.03 and 0.05) at different frequencies (95, 110, 190, 220, 330 and 440 GHz) at low temperatures. The spectra of the doped samples show resonances whose positions are dependent on Zn concentration, frequency and temperature. The analysis of intensity variation of these lines with temperature allows us to identify them as originating in transitions within states situated inside the Spin Peierls gap. A qualitative explanation of the details of the spectra is possible if we assume that these states in the gap are associated with "loose" spins created near the Zn impurities, as recently theoreticaly predicted. A new phenomenon of quenching of the ESR signal across the Dimerized to Incommensurate phase-boundary is observed.Comment: 4 pages, 5 ps figures in the text, submitted to Phys. Rev. Let

    Diluted antiferromagnet in a ferromagnetic enviroment

    Full text link
    The question of robustness of a network under random ``attacks'' is treated in the framework of critical phenomena. The persistence of spontaneous magnetization of a ferromagnetic system to the random inclusion of antiferromagnetic interactions is investigated. After examing the static properties of the quenched version (in respect to the random antiferromagnetic interactions) of the model, the persistence of the magnetization is analysed also in the annealed approximation, and the difference in the results are discussed

    Spin Defects in Spin-Peierls Systems

    Full text link
    We examine spin-Peierls systems in the presence of spin defects which are introduced by replacing magnetic ions Cu2+Cu^{2+} with non-magnetic ones Zn2+Zn^{2+} in CuGeO3CuGeO_3. By using the action for the bosonized Hamiltonian, it is shown directly that the antiferromagnetic state induced by the spin defects coexists with the spin-Peierls states. Further the doping dependences of both transition temperature of spin-Peierls state and the spin gap have been calculated. The transition temperature of the present estimation shows good agreement quantitatively with that observed in Cu_{1-\de} Zn_\de O_3 for the region of the doping rate, \de<0.02.Comment: jpsj style, 11 pages, 2 figure

    Temperature-dependent spin gap and singlet ground state in BaCuSi2O6

    Full text link
    Bulk magnetic measurements and inelastic neutron scattering were used to investigate the spin-singlet ground state and magnetic gap excitations in BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The results are well described by a model based on weakly interacting antiferromagnetic dimers. A strongly temperature-dependent dispersion in the gap modes was found. We suggest that the observed excitations are analogous to magneto-excitons in light rare-earth compounds, but are an intrinsic property of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct download: http://papillon.phy.bnl.gov/preprints/bacusio.htm

    Separation of the magnetic phases at the N\'{e}el point in the diluted spin-Peierls magnet CuGeO3

    Full text link
    The impurity induced antiferromagnetic ordering of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO(3) was studied by ESR technique. Crystals with the Mg concentration x<4% demonstrate a coexistence of paramagnetic and antiferromagnetic ESR modes. This coexistence indicates the separation of a macroscopically uniform sample in the paramagnetic and antiferromagnetic phases. In the presence of the long-range spin-Peierls order (in a sample with x=1.71%) the volume of the antiferromagnetic phase immediately below the N\'{e}el point T_N is much smaller than the volume of the paramagnetic phase. In the presence of the short-range spin-Peierls order (in samples with x=2.88%, x= 3.2%) there are comparable volumes of paramagnetic and antiferromagnetic phases at T=T_N. The fraction of the antiferromagnetic phase increases with lowering temperature. In the absence of the spin-Peierls dimerization (at x=4.57%)the whole sample exhibits the transition into the antiferromagnetic state and there is no phase separation. The phase separation is explained by the consideration of clusters of staggered magnetization located near impurity atoms. In this model the areas occupied by coherently correlated spins expand with decreasing temperature and the percolation of the ordered area through a macroscopic distance occurs.Comment: 7pages, 10 figure

    Temperature Dependence of Spin and Bond Ordering in a Spin-Peierls System

    Full text link
    We investigate thermodynamic properties of a one-dimensional S=1/2 antiferromagnetic Heisenberg model coupled to a lattice distortion by a quantum Monte Carlo method. In particular we study how spin and lattice dimerize as a function of the temperature, which gives a fundamental process of the spin-Peierls transition in higher dimensions. The degree of freedom of the lattice is taken into account adiabatically and the thermal distribution of the lattice distortion is obtained by the thermal bath algorithm. We find that the dimerization develops as the temperature decreases and it converges to the value of the dimerization of the ground state at T=0. Furthermore we find that the coupling constants of spins fluctuate quite largly at high temperature and there thermodynamic properties deviate from those of the uniform chain. Doping of non-magnetic impurities causes cut of the chain into short chains with open boundary. We investigate thermodynamic properties of open chains taking relaxation of the lattice into consideration. We find that strong bonds locate at the edges and a defect of the bond alternation appears in the chain with odd number of sites, which causes enhancement of the staggered magnetic order. We find a spreaded staggered structure which indicates that the defect moves diffusively in the chain even at very low temperature.Comment: 7 pages, 17 figures; added comments on section 2 and 3, corrected typo

    Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4

    Full text link
    Metal-insulator transition in Ca_{1-x}Li_xPd_3O_4 has been studied through charge transport measurements. The resistivity, the Seebeck coefficient, and the Hall coefficient are consistently explained in terms of a simple one-band picture, where a hole with a moderately enhanced mass is itinerant three-dimensionally. Contrary to the theoretical prediction [Phys. Rev. B62, 13426 (2000)], CaPd_3O_4 is unlikely to be an excitonic insulator, and holds a finite carrier concentration down to 4.2 K. Thus the metal-insulator transition in this system is basically driven by localization effects.Comment: RevTeX4 format, 4 pages, 5 eps figure

    Thermal Conductivity of the Spin Peierls Compound CuGeO_3

    Full text link
    The thermal conductivity of the Spin-Peierls (SP) compound CuGeO_3 was measured in magnetic fields up to 16 T. Above the SP transition, the heat transport due to spin excitations causes a peak at around 22 K, while below the transition the spin excitations rapidly diminish and the heat transport is dominated by phonons; however, the main scattering process of the phonons is with spin excitations, which demonstrates itself in an unusual peak in the thermal conductivity at about 5.5 K. This low-temperature peak is strongly suppressed with magnetic fields in excess of 12.5 T.Comment: 6 pages, including 2 postscript figure

    Spin-glass behaviour on random lattices

    Get PDF
    The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction ww of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w=1/2w=1/2, correponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w<1/2w<1/2) from a region with spin-glass, ferromagnetic, mixed, and paramagnetic phases (w>1/2w>1/2)
    • …
    corecore