12,755 research outputs found

    Extracting high fidelity quantum computer hardware from random systems

    Full text link
    An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra, Australia and Lund, Sweden, and the present description follows more closely the Lund work. Techniques will be described that include optimal filtering of the initially inhomogeneously broadened profile down to well separated and narrow ensembles, as well as the use of advanced pulse-shaping in order to achieve robust arbitrary single-qubit operations with fidelities above 90%, as characterized by quantum state tomography. It is expected that full scalability of these systems will require the ability to determine the state of single rare-earth ions. It has been proposed that this can be done using special readout ions doped into the crystal and an update is given on the work to find and characterize such ions. Finally, a few aspects on the possibilities for remote entanglement of ions in separate rare-earth-ion-doped crystals are considered.Comment: 19 pages, 9 figures. Written for The Proceedings of the Nobelsymposium on qubits for future quantum computers, Gothenburg, May-0

    Composite Dipolar Recoupling: Anisotropy Compensated Coherence Transfer in Solid-State NMR

    Full text link
    The efficiency of dipole-dipole coupling driven coherence transfer experiments in solid-state NMR spectroscopy of powder samples is limited by dispersion of the orientation of the internuclear vectors relative to the external magnetic field. Here we introduce general design principles and resulting pulse sequences that approach full polarization transfer efficiency for all crystallite orientations in a powder in magic-angle-spinning experiments. The methods compensate for the defocusing of coherence due to orientation dependent dipolar coupling interactions and inhomogeneous radio-frequency fields. The compensation scheme is very simple to implement as a scaffold (comb) of compensating pulses in which the pulse sequence to be improved may be inserted. The degree of compensation can be adjusted and should be balanced as a compromise between efficiency and length of the overall pulse sequence. We show by numerical and experimental data that the presented compensation protocol significantly improves the efficiency of known dipolar recoupling solid-state NMR experiment

    States prepared by decay

    Get PDF
    We consider the time evolution of a discrete state embedded in a continuum. Results from scattering theory can be utilized to solve the initial value problem and discuss the system as a model of wave packet preparation. Extensive use is made of the analytic properties of the propagators, and simple model systems are evaluated to illustrate the argument. We verify the exponential appearence of the continuum state and its propagation as a localized wave packet.Comment: 22 pages, Latex2.09, 6 Postscript figures embedded using psfig, see also http://www.physics.helsinki.fi/~kasuomin/ To appear in a Special Issue of Journal of Modern Optics (1997

    A non-destructive view with X-rays into the strain state of bronze axes.

    No full text
    In this paper we present a new approach using highly surface sensitive X-ray diffraction methods for archaeometrical investigation highlighted on the Neolithic Axe of Ahneby. Applying the sin2Κ-method with a scintillation detector and a MAXIM camera setup, both usually applied for material strain analysis on modern metal fabrics. We can distinguish between different production states of bronze axes: Cast, forged and tempered. The method can be applied as a local probe of some 100th of Όm2 or integrative on a square centimeter surface area. We applied established synchrotron radiation based methods of material strain mapping and diffraction on a Neolithic bronze axe as well as replicated material for noninvasive analysis. The main goal of the described investigations was to identify the effects upon the bronze objects of post cast surface treatment with stone tools and of heat treatment

    Multiple-spin coherence transfer in linear Ising spin chains and beyond: numerically-optimized pulses and experiments

    Full text link
    We study multiple-spin coherence transfers in linear Ising spin chains with nearest neighbor couplings. These constitute a model for efficient information transfers in future quantum computing devices and for many multi-dimensional experiments for the assignment of complex spectra in nuclear magnetic resonance spectroscopy. We complement prior analytic techniques for multiple-spin coherence transfers with a systematic numerical study where we obtain strong evidence that a certain analytically-motivated family of restricted controls is sufficient for time-optimality. In the case of a linear three-spin system, additional evidence suggests that prior analytic pulse sequences using this family of restricted controls are time-optimal even for arbitrary local controls. In addition, we compare the pulse sequences for linear Ising spin chains to pulse sequences for more realistic spin systems with additional long-range couplings between non-adjacent spins. We experimentally implement the derived pulse sequences in three and four spin systems and demonstrate that they are applicable in realistic settings under relaxation and experimental imperfections-in particular-by deriving broadband pulse sequences which are robust with respect to frequency offsets.Comment: 11 page

    Peer mentorship and positive effects on student mentor and mentee retention and academic success

    Get PDF
    This study examined how the introduction of peer mentorship in an undergraduate health and social welfare programme at a large northern university affected student learning. Using an ethnographic case study approach, the study draws upon data collected from a small group of mentors and their mentees over a period of one academic year using interviews, reflective journals, assessment and course evaluation data. Analysis of the data collected identified a number of key findings: peer mentorship improves assessment performance for both mentee and mentor; reduces stress and anxiety, enhances participation and engagement in the academic community, and adds value to student outcomes
    • 

    corecore