270 research outputs found

    Maximum relative excitation of a specific vibrational mode via optimum laser pulse duration

    Get PDF
    For molecules and materials responding to femtosecond-scale optical laser pulses, we predict maximum relative excitation of a Raman-active vibrational mode with period T when the pulse has an FWHM duration of 0.42 T. This result follows from a general analytical model, and is precisely confirmed by detailed density-functional-based dynamical simulations for C60 and a carbon nanotube, which include anharmonicity, nonlinearity, no assumptions about the polarizability tensor, and no averaging over rapid oscillations within the pulse. The mode specificity is, of course, best at low temperature and for pulses that are electronically off-resonance, and the energy deposited in any mode is proportional to the fourth power of the electric field.Comment: 5 pages, 4 figure

    Neutron stars within the SU(2) parity doublet model

    Full text link
    The equation of state of beta-stable and charge neutral nucleonic matter is computed within the SU(2) parity doublet model in mean field and in the relativistic Hartree approximation. The mass of the chiral partner of the nucleon is assumed to be 1200 MeV. The transition to the chiral restored phase turns out to be a smooth crossover in all the cases considered, taking place at a baryon density of just 2ρ02\rho_0. The mass-radius relations of compact stars are calculated to constrain the model parameters from the maximum mass limit of neutron stars. It is demonstrated that chiral symmetry starts to be restored, which in this model implies the appearance of the chiral partners of the nucleons, in the center of neutron stars. However, the analysis of the decay width of the assumed chiral partner of the nucleon poses limits on the validity of the present version of the model to describe vacuum properties.Comment: 14 pages, 9 figures, 2 tables, version accepted for publication in EJP

    Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3

    Get PDF
    Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability mu_a [H(omega) oriented within the hexagonal plane] below the Neel temperature T_N. This excitation softens from 41 to 32 cm-1 on heating and finally disappears above T_N. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity epsilon_c within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases on heating towards room temperature thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both epsilon_c and epsilon_a spectra and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons; however, their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon- paramagnon differential absorption processes. The latter is enabled by a strong short-range in-plane spin correlations in the paramagnetic phase.Comment: subm. to PR
    corecore