1,754 research outputs found
Meson PVV Interactions are determined by Quark Loops
We show that all abnormal parity three-body meson interactions can be
adequately described by quark loops, evaluated at zero external momentum, with
couplings determined by symmetry. We focus primarily on radiative
meson decays which involve one pseudoscalar. The agreement with experiment for
non-rare decays is surprisingly good and requires very few parameters, namely
the coupling constants and and some mixing angles.
This agreement extends to some three-body decays that are dominated by pion
pairs in a P-wave state.Comment: 21 pages, Revtex, one figur
Momentum and Coordinate Space Three-nucleon Potentials
In this paper we give explicit formulae in momentum and coordinate space for
the three-nucleon potentials due to and meson exchange, derived
from off-mass-shell meson-nucleon scattering amplitudes which are constrained
by the symmetries of QCD and by the experimental data. Those potentials have
already been applied to nuclear matter calculations. Here we display additional
terms which appear to be the most important for nuclear structure. The
potentials are decomposed in a way that separates the contributions of
different physical mechanisms involved in the meson-nucleon amplitudes. The
same type of decomposition is presented for the TM force: the
, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon
request
Impact of boundaries on fully connected random geometric networks
Many complex networks exhibit a percolation transition involving a
macroscopic connected component, with universal features largely independent of
the microscopic model and the macroscopic domain geometry. In contrast, we show
that the transition to full connectivity is strongly influenced by details of
the boundary, but observe an alternative form of universality. Our approach
correctly distinguishes connectivity properties of networks in domains with
equal bulk contributions. It also facilitates system design to promote or avoid
full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure
Does The 3N-Force Have A Hard Core?
The meson-nucleon dynamics that generates the hard core of the RuhrPot
two-nucleon interaction is shown to vanish in the irreducible 3N force. This
result indicates a small 3N force dominated by conventional light
meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian.
The resulting RuhrPot 3N force is defined in the appendix. A completely
different result is expected when the Tamm-Dancoff/Bloch-Horowitz procedure is
used to define the NN and 3N potentials. In that approach, (e.g. full Bonn
potential) both the NN {\it and} 3N potentials contain non-vanishing
contributions from the coherent sum of meson-recoil dynamics and the
possibility of a large hard core requiring explicit calculation cannot be ruled
out.Comment: 16 pages REVTeX + 3 ps fig
The one-pion-exchange three-nucleon force and the puzzle
We consider a new three-nucleon force generated by the exchange of one pion
in the presence of a 2N correlation. The underlying irreducible diagram has
been recently suggested by the authors as a possible candidate to explain the
puzzle of the vector analyzing powers and for nucleon-deuteron
scattering. Herein, we have calculated the elastic neutron-deuteron
differential cross section, , , , , and
below break-up threshold by accurately solving the Alt-Grassberger-Sandhas
equations with realistic interactions. We have also studied how evolves
below 30 MeV. The results indicate that this new 3NF diagram provides one
possible additional contribution, with the correct spin-isospin structure, for
the explanation of the origin of this puzzle.Comment: revised version: We have also studied how Ay evolves below 30 MeV, 4
Pages (twocolumn), 2 figures, uses psfig, RevTe
Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction
Charge-symmetry breaking in the nucleon-nucleon force is investigated within
an effective field theory, using a classification of isospin-violating
interactions based on power-counting arguments. The relevant
charge-symmetry-breaking interactions corresponding to the first two orders in
the power counting are discussed, including their effects on the 3He-3H
binding-energy difference. The static charge-symmetry-breaking potential linear
in the nucleon-mass difference is constructed using chiral perturbation theory.
Explicit formulae in momentum and configuration spaces are presented. The
present work completes previously obtained results.Comment: 15 pages, 2 figure
Quadratic momentum dependence in the nucleon-nucleon interaction
We investigate different choices for the quadratic momentum dependence
required in nucleon-nucleon potentials to fit phase shifts in high
partial-waves. In the Argonne v18 potential L**2 and (L.S)**2 operators are
used to represent this dependence. The v18 potential is simple to use in
many-body calculations since it has no quadratic momentum-dependent terms in
S-waves. However, p**2 rather than L**2 dependence occurs naturally in
meson-exchange models of nuclear forces. We construct an alternate version of
the Argonne potential, designated Argonne v18pq, in which the L**2 and (L.S)**2
operators are replaced by p**2 and Qij operators, respectively. The quadratic
momentum-dependent terms are smaller in the v18pq than in the v18 interaction.
Results for the ground state binding energies of 3H, 3He, and 4He, obtained
with the variational Monte Carlo method, are presented for both the models with
and without three-nucleon interactions. We find that the nuclear wave functions
obtained with the v18pq are slightly larger than those with v18 at
interparticle distances < 1 fm. The two models provide essentially the same
binding in the light nuclei, although the v18pq gains less attraction when a
fixed three-nucleon potential is added.Comment: v.2 important corrections in tables and minor revisions in text;
reference for web-posted subroutine adde
Charge-Symmetry-Breaking Three-Nucleon Forces
Leading-order three-nucleon forces that violate isospin symmetry are
calculated in Chiral Perturbation Theory. The effect of the
charge-symmetry-breaking three-nucleon force is investigated in the trinucleon
systems using Faddeev calculations. We find that the contribution of this force
to the 3He - 3H binding-energy difference is approximately 5 keV.Comment: 14 pages, 3 figure
Management of Anticoagulant and Thrombolytic Agents in Deep Venous Thrombosis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68445/2/10.1177_153857448201600101.pd
Equivalence of Nonstatic Two-Pion-Exchange Nucleon-Nucleon Potentials
Off-shell aspects of the one-pion-exchange potential and their relationship
to different forms of the nonstatic (subleading-order) chiral two-pion-exchange
nucleon-nucleon potential are discussed. Various types of off-shell behavior
are categorized and numerous examples are given. Recently derived potentials
based on chiral approaches are supplemented by a rather general form of the
two-pion-exchange potential derived using old-fashioned methods. The latter is
closely related to a general form of one-pion-exchange relativistic corrections
and nonstatic two-pion-exchange three-nucleon forces developed long ago.Comment: 16 pages, latex -- Phys. Rev. C (to appear) -- Published versio
- âŠ