1,754 research outputs found

    Meson PVV Interactions are determined by Quark Loops

    Get PDF
    We show that all abnormal parity three-body meson interactions can be adequately described by quark loops, evaluated at zero external momentum, with couplings determined by U(Nf)U(N_f) symmetry. We focus primarily on radiative meson decays which involve one pseudoscalar. The agreement with experiment for non-rare decays is surprisingly good and requires very few parameters, namely the coupling constants gπqqg_{\pi qq} and gρqqg_{\rho qq} and some mixing angles. This agreement extends to some three-body decays that are dominated by pion pairs in a P-wave state.Comment: 21 pages, Revtex, one figur

    Momentum and Coordinate Space Three-nucleon Potentials

    Full text link
    In this paper we give explicit formulae in momentum and coordinate space for the three-nucleon potentials due to ρ\rho and π\pi meson exchange, derived from off-mass-shell meson-nucleon scattering amplitudes which are constrained by the symmetries of QCD and by the experimental data. Those potentials have already been applied to nuclear matter calculations. Here we display additional terms which appear to be the most important for nuclear structure. The potentials are decomposed in a way that separates the contributions of different physical mechanisms involved in the meson-nucleon amplitudes. The same type of decomposition is presented for the π−π\pi - \pi TM force: the Δ\Delta, the chiral symmetry breaking and the nucleon pair terms are isolated.Comment: LATEX, 33 pages, 3 figures (available as postscript files upon request

    Impact of boundaries on fully connected random geometric networks

    Full text link
    Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure

    Does The 3N-Force Have A Hard Core?

    Full text link
    The meson-nucleon dynamics that generates the hard core of the RuhrPot two-nucleon interaction is shown to vanish in the irreducible 3N force. This result indicates a small 3N force dominated by conventional light meson-exchange dynamics and holds for an arbitrary meson-theoretic Lagrangian. The resulting RuhrPot 3N force is defined in the appendix. A completely different result is expected when the Tamm-Dancoff/Bloch-Horowitz procedure is used to define the NN and 3N potentials. In that approach, (e.g. full Bonn potential) both the NN {\it and} 3N potentials contain non-vanishing contributions from the coherent sum of meson-recoil dynamics and the possibility of a large hard core requiring explicit calculation cannot be ruled out.Comment: 16 pages REVTeX + 3 ps fig

    The one-pion-exchange three-nucleon force and the AyA_y puzzle

    Get PDF
    We consider a new three-nucleon force generated by the exchange of one pion in the presence of a 2N correlation. The underlying irreducible diagram has been recently suggested by the authors as a possible candidate to explain the puzzle of the vector analyzing powers AyA_y and iT11iT_{11} for nucleon-deuteron scattering. Herein, we have calculated the elastic neutron-deuteron differential cross section, AyA_y, iT11iT_{11}, T20T_{20}, T21T_{21}, and T22T_{22} below break-up threshold by accurately solving the Alt-Grassberger-Sandhas equations with realistic interactions. We have also studied how AyA_y evolves below 30 MeV. The results indicate that this new 3NF diagram provides one possible additional contribution, with the correct spin-isospin structure, for the explanation of the origin of this puzzle.Comment: revised version: We have also studied how Ay evolves below 30 MeV, 4 Pages (twocolumn), 2 figures, uses psfig, RevTe

    Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction

    Full text link
    Charge-symmetry breaking in the nucleon-nucleon force is investigated within an effective field theory, using a classification of isospin-violating interactions based on power-counting arguments. The relevant charge-symmetry-breaking interactions corresponding to the first two orders in the power counting are discussed, including their effects on the 3He-3H binding-energy difference. The static charge-symmetry-breaking potential linear in the nucleon-mass difference is constructed using chiral perturbation theory. Explicit formulae in momentum and configuration spaces are presented. The present work completes previously obtained results.Comment: 15 pages, 2 figure

    Quadratic momentum dependence in the nucleon-nucleon interaction

    Full text link
    We investigate different choices for the quadratic momentum dependence required in nucleon-nucleon potentials to fit phase shifts in high partial-waves. In the Argonne v18 potential L**2 and (L.S)**2 operators are used to represent this dependence. The v18 potential is simple to use in many-body calculations since it has no quadratic momentum-dependent terms in S-waves. However, p**2 rather than L**2 dependence occurs naturally in meson-exchange models of nuclear forces. We construct an alternate version of the Argonne potential, designated Argonne v18pq, in which the L**2 and (L.S)**2 operators are replaced by p**2 and Qij operators, respectively. The quadratic momentum-dependent terms are smaller in the v18pq than in the v18 interaction. Results for the ground state binding energies of 3H, 3He, and 4He, obtained with the variational Monte Carlo method, are presented for both the models with and without three-nucleon interactions. We find that the nuclear wave functions obtained with the v18pq are slightly larger than those with v18 at interparticle distances < 1 fm. The two models provide essentially the same binding in the light nuclei, although the v18pq gains less attraction when a fixed three-nucleon potential is added.Comment: v.2 important corrections in tables and minor revisions in text; reference for web-posted subroutine adde

    Charge-Symmetry-Breaking Three-Nucleon Forces

    Full text link
    Leading-order three-nucleon forces that violate isospin symmetry are calculated in Chiral Perturbation Theory. The effect of the charge-symmetry-breaking three-nucleon force is investigated in the trinucleon systems using Faddeev calculations. We find that the contribution of this force to the 3He - 3H binding-energy difference is approximately 5 keV.Comment: 14 pages, 3 figure

    Management of Anticoagulant and Thrombolytic Agents in Deep Venous Thrombosis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68445/2/10.1177_153857448201600101.pd

    Equivalence of Nonstatic Two-Pion-Exchange Nucleon-Nucleon Potentials

    Full text link
    Off-shell aspects of the one-pion-exchange potential and their relationship to different forms of the nonstatic (subleading-order) chiral two-pion-exchange nucleon-nucleon potential are discussed. Various types of off-shell behavior are categorized and numerous examples are given. Recently derived potentials based on chiral approaches are supplemented by a rather general form of the two-pion-exchange potential derived using old-fashioned methods. The latter is closely related to a general form of one-pion-exchange relativistic corrections and nonstatic two-pion-exchange three-nucleon forces developed long ago.Comment: 16 pages, latex -- Phys. Rev. C (to appear) -- Published versio
    • 

    corecore