57,362 research outputs found

    Flying car design and testing

    Get PDF
    This paper is primarily concerned with the inverted design process and manufacture of a flying car prototype which can overcome the problem of traffic management in the world today. A possible solution to the problem of overcrowded roads would be to design a flying or hovering car. Given technological advances in aircraft construction, navigation and operation, flying cars or personal aircraft are now a feasible proposition. The viability of such a concept was investigated in terms of producing a conceptual design for a two-person carrying flying vehicle, manufacturing a flying prototype followed by ground and initial flight testing

    Hybrid LQG-Neural Controller for Inverted Pendulum System

    Full text link
    The paper presents a hybrid system controller, incorporating a neural and an LQG controller. The neural controller has been optimized by genetic algorithms directly on the inverted pendulum system. The failure free optimization process stipulated a relatively small region of the asymptotic stability of the neural controller, which is concentrated around the regulation point. The presented hybrid controller combines benefits of a genetically optimized neural controller and an LQG controller in a single system controller. High quality of the regulation process is achieved through utilization of the neural controller, while stability of the system during transient processes and a wide range of operation are assured through application of the LQG controller. The hybrid controller has been validated by applying it to a simulation model of an inherently unstable system of inverted pendulum

    Genetic variation within and among asexual populations of Porphyra umbilicalis Kützing (Bangiales, Rhodophyta) in the Gulf of Maine, USA

    Get PDF
    The intertidal marine red alga Porphyra umbilicalis reproduces asexually in the Northwest Atlantic. We looked for population substructure among typical open-coastal and atypical estuarine habitats in seven asexual populations of P. umbilicalis from Maine to New Hampshire using eight expressed sequence tag-simple sequence repeats (EST-SSR) or microsatellite loci. Six genotypes were identified, four of which may represent recombinant genotypes from a recombination event that took place locally, or that took place prior to introduction to the Northwest Atlantic. Genotypic diversity was lowest in a population from Wiscasset, Maine, which inhabits an atypical habitat high in the intertidal zone of a bridge piling in an estuarine tidal rapid. Genotypic diversity was highest in the southernmost populations from New Hampshire; we identified two genotypes that were unique to the southernmost populations, and probably represent the most derived genotypes. We looked at genetic distances among populations in similar habitats, and found that populations were more closely related to their closest neighboring population than to a population in a similar habitat. We show that genotypic diversity within P. umbilicalis populations in the Gulf of Maine is relatively high and thus fits a model of high steady-state variation within asexual populations

    Correlation of p-doping in CVD Graphene with Substrate Surface Charges

    Get PDF
    Correlations between the level of p-doping exhibited in large area chemical vapour deposition (CVD) graphene field effect transistor structures (gFETs) and residual charges created by a variety of surface treatments to the silicon dioxide (SiO(2)) substrates prior to CVD graphene transfer are measured. Beginning with graphene on untreated thermal oxidised silicon, a minimum conductivity (σ(min)) occurring at gate voltage V(g) = 15 V (Dirac Point) is measured. It was found that more aggressive treatments (O(2) plasma and UV Ozone treatments) further increase the gate voltage of the Dirac point up to 65 V, corresponding to a significant increase of the level of p-doping displayed in the graphene. An electrowetting model describing the measured relationship between the contact angle (θ) of a water droplet applied to the treated substrate/graphene surface and an effective gate voltage from a surface charge density is proposed to describe biasing of V(g) at σ(min) and was found to fit the measurements with multiplication of a correction factor, allowing effective non-destructive approximation of substrate added charge carrier density using contact angle measurements

    Antivortices due to competing orbital and paramagnetic pair-breaking effects

    Full text link
    Thermodynamically stable vortex-antivortex structures in a quasi-two-dimensional superconductor in a tilted magnetic field are predicted. For this geometry, both orbital and spin pair-breaking effects exist, with their relative strength depending on the tilt angle \Theta. The spectrum of possible states contains as limits the ordinary vortex state (for large \Theta) and the Fulde-Ferrell-Larkin-Ovchinnikov state (for \Theta=0). The quasiclassical equations are solved near H_{c2} for arbitrary \Theta and it is shown that stable states with coexisting vortices and antivortices exist in a small interval close to \Theta=0. The results are compared with recent predictions of antivortices in mesoscopic samples.Comment: 11 pages, 3 figure

    Quantization and Fractional Quantization of Currents in Periodically Driven Stochastic Systems I: Average Currents

    Full text link
    This article studies Markovian stochastic motion of a particle on a graph with finite number of nodes and periodically time-dependent transition rates that satisfy the detailed balance condition at any time. We show that under general conditions, the currents in the system on average become quantized or fractionally quantized for adiabatic driving at sufficiently low temperature. We develop the quantitative theory of this quantization and interpret it in terms of topological invariants. By implementing the celebrated Kirchhoff theorem we derive a general and explicit formula for the average generated current that plays a role of an efficient tool for treating the current quantization effects.Comment: 22 pages, 7 figure

    Distribution, morphology, and genetic affinities of dwarf embedded Fucus populations from the Northwest Atlantic Ocean

    Get PDF
    Dwarf embedded Fucus populations in the Northwest Atlantic Ocean are restricted to the upper intertidal zone in sandy salt marsh environments; they lack holdfasts and are from attached parental populations of F. spiralis or F. spiralis x F. vesiculosus hybrids after breakage and entanglement with halophytic marsh grasses. Dwarf forms are dichotomously branched, flat, and have a mean overall length and width of 20.3 and 1.3 mm, respectively. Thus, they are longer than Irish (mean 9.3 mm) and Alaskan (mean 15.0 mm) populations identified as F cottonii. Reciprocal transplants of different Fucus taxa in a Maine salt marsh confirm that F spiralis can become transformed into dwarf embedded thalli within the high intertidal zone, while the latter can grow into F. s. ecad lutarius within the mid intertidal zone. Thus, vertical transplantation can modify fucoid morphology and result in varying ecads. Microsatellite markers indicate that attached F spiralis and F vesiculosus are genetically distinct, while dwarf forms may arise via hybridization between the two taxa. The ratio of intermediate to species-specific-genotypes decreased with larger thalli. Also, F s. ecad lutarius consists of a mixture of intermediate and pure genotypes, while dwarf thalli show a greater frequency of hybrids
    • …
    corecore