32,576 research outputs found
Laser heterodyne system for obtaining height profiles of minor species in the atmosphere
An infrared laser heterodyne system for obtaining height profiles of minor constituents of the atmosphere was developed and erected. A brief discription of the system is given. The system consists of a tunable CO2 waveguide laser in the 9 to 11 micrometer band, that is used as a local oscillator and a heliostat that follows the sun and brings in solar radiation, that is mixed with the laser beam in a high speed liquid nitrogen cooled mercury cadmium telluride detector. The detected signal is analysed in a RF spectrum analyser that allows tracing absorption line profiles. Absorption lines of a number of minor constituents in the troposphere and stratosphere, such as O3, NH3, H2O, SO2, ClO, N2O, are in the 9 to 11 micrometer band and overlap with that of CO2 laser range. The experimental system has been made operational and trial observations taken. Current measurements are limited to ozone height profiles. Results are presented
Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness
The activation gaps for fractional quantum Hall states at filling fractions
are computed for heterojunction, square quantum well, as well as
parabolic quantum well geometries, using an interaction potential calculated
from a self-consistent electronic structure calculation in the local density
approximation. The finite thickness is estimated to make 30% correction
to the gap in the heterojunction geometry for typical parameters, which
accounts for roughly half of the discrepancy between the experiment and
theoretical gaps computed for a pure two dimensional system. Certain model
interactions are also considered. It is found that the activation energies
behave qualitatively differently depending on whether the interaction is of
longer or shorter range than the Coulomb interaction; there are indications
that fractional Hall states close to the Fermi sea are destabilized for the
latter.Comment: 32 pages, 13 figure
Cumulative effect of Forbush decreases in the heliospheric modulation during the present solar cycle
A monthly Forbush decrease index (Fd-I) is generated and it is compared with the observed long term chnges in the cosmic ray intensity near earth at energies greater than or equal to 1 Gev over 1976-83. Significant correlation is observed between the two except for 1978. Such an effect is also seen in the correlation plot between the solar flare index (SFI) and Fd-I
Evolutionary dynamics of the most populated genotype on rugged fitness landscapes
We consider an asexual population evolving on rugged fitness landscapes which
are defined on the multi-dimensional genotypic space and have many local
optima. We track the most populated genotype as it changes when the population
jumps from a fitness peak to a better one during the process of adaptation.
This is done using the dynamics of the shell model which is a simplified
version of the quasispecies model for infinite populations and standard
Wright-Fisher dynamics for large finite populations. We show that the
population fraction of a genotype obtained within the quasispecies model and
the shell model match for fit genotypes and at short times, but the dynamics of
the two models are identical for questions related to the most populated
genotype. We calculate exactly several properties of the jumps in infinite
populations some of which were obtained numerically in previous works. We also
present our preliminary simulation results for finite populations. In
particular, we measure the jump distribution in time and find that it decays as
as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev
Ozone height profiles using laser heterodyne radiometer
The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail
Emulating Non-Abelian Topological Matter in Cold Atom Optical Lattices
Certain proposed extended Bose-Hubbard models may exhibit topologically
ordered ground states with excitations obeying non-Abelian braid statistics. A
sufficient tuning of Hubbard parameters could yield excitation braiding rules
allowing implementation of a universal set of topologically protected quantum
gates. We discuss potential difficulties in realizing a model with a proposed
non-Abelian topologically ordered ground state using optical lattices
containing bosonic dipoles. Our direct implementation scheme does not realize
the necessary anisotropic hopping, anisotropic interactions, and low
temperatures
- …