10 research outputs found

    OFF ganglion cells cannot drive the optokinetic reflex in zebrafish

    No full text
    Whereas the zebrafish retina has long been an important model system for developmental and genetic studies, little is known about the responses of the inner retinal neurons. Here we report single-unit ganglion cell recordings from 5- to 6-day-old zebrafish larvae. In wild-type larvae we identify at least five subtypes of ganglion cell responses to full-field illumination, with ON-OFF and ON-type cells predominating. In the nrc mutant retina, in which the photoreceptor terminals develop abnormally, we observe normal OFF responses but abnormal ON-OFF responses and no ON responses. Previously characterized as blind, these mutants lack an optokinetic reflex (OKR), but in another behavioral assay nrc mutant fish have near-normal responses to the offset of light and slow and sluggish responses to the onset of light. Pharmacological block of the ON pathway mimics most of the nrc visual defects. We conclude that the abnormal photoreceptor terminals in nrc mutants predominantly perturb the ON pathway and that the ON pathway is necessary to drive the OKR in larval zebrafish

    Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei

    No full text
    The suprachiasmatic nucleus (SCN), the brain's principal circadian pacemaker, coordinates adaptive daily cycles of behavior and physiology, including the rhythm of sleep and wakefulness. The cellular mechanism sustaining SCN circadian timing is well characterized, but the neurochemical pathways by which SCN neurons coordinate circadian behaviors remain unknown. SCN transplant studies suggest a role for (unidentified) secreted factors, and one potential candidate is the SCN neuropeptide prokineticin 2 (Prok2). Prok2 and its cognate prokineticin receptor 2 (Prokr2/Gpcr73l1) are widely expressed in both the SCN and its neural targets, and Prok2 is light-regulated. Hence, they may contribute to cellular timing within the SCN, entrainment of the clock, and/or they may mediate circadian output. We show that a targeted null mutation of Prokr2 disrupts circadian coordination of the activity cycle and thermoregulation. Specifically, mice lacking Prokr2 lost precision in timing the onset of nocturnal locomotor activity; and under both a light/dark cycle and continuous darkness, there was a pronounced temporal redistribution of activity away from early to late circadian night. Moreover, the coherence of circadian behavior was significantly reduced, and nocturnal body temperature was depressed. Entrainment by light is not, however, dependent on Prokr2, and bioluminescence real-time imaging of organotypical SCN slices showed that the mutant SCN is fully competent as a circadian oscillator. We conclude that Prokr2 is not necessary for SCN cellular timekeeping or entrainment, but it is an essential link for coordination of circadian behavior and physiology by the SCN, especially in defining the onset and maintenance of circadian night

    Reciprocal connections between the suprachiasmatic nucleus and the midbrain raphe nuclei: A putative role in the circadian control of behavioral states

    No full text

    Remodeling the clock: coactivators and signal transduction in the circadian clockworks

    No full text

    The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond

    No full text
    corecore