2,023 research outputs found
Auxiliary-field quantum Monte Carlo study of first- and second-row post-d elements
A series of calculations for the first- and second-row post-d elements (Ga-Br
and In-I) are presented using the phaseless auxiliary-field quantum Monte Carlo
(AF QMC) method. This method is formulated in a Hilbert space defined by any
chosen one-particle basis, and maps the many-body problem into a linear
combination of independent-particle solutions with external auxiliary fields.
The phase/sign problem is handled approximately by the phaseless formalism
using a trial wave function, which in our calculations was chosen to be the
Hartree-Fock solution. We used the consistent correlated basis sets of Peterson
and coworkers, which employ a small core relativistic pseudopotential. The AF
QMC results are compared with experiment and with those from density-functional
(GGA and B3LYP) and coupled-cluster CCSD(T) calculations. The AF QMC total
energies agree with CCSD(T) to within a few milli-hartrees across the systems
and over several basis sets. The calculated atomic electron affinities,
ionization energies, and spectroscopic properties of dimers are, at large basis
sets, in excellent agreement with experiment.Comment: 10 pages, 2 figures. To be published in Journal of Chemical Physic
Bond breaking with auxiliary-field quantum Monte Carlo
Bond stretching mimics different levels of electron correlation and provides
a challenging testbed for approximate many-body computational methods. Using
the recently developed phaseless auxiliary-field quantum Monte Carlo (AF QMC)
method, we examine bond stretching in the well-studied molecules BH and N,
and in the H chain. To control the sign/phase problem, the phaseless AF
QMC method constrains the paths in the auxiliary-field path integrals with an
approximate phase condition that depends on a trial wave function. With single
Slater determinants from unrestricted Hartree-Fock (UHF) as trial wave
function, the phaseless AF QMC method generally gives better overall accuracy
and a more uniform behavior than the coupled cluster CCSD(T) method in mapping
the potential-energy curve. In both BH and N, we also study the use of
multiple-determinant trial wave functions from multi-configuration
self-consistent-field (MCSCF) calculations. The increase in computational cost
versus the gain in statistical and systematic accuracy are examined. With such
trial wave functions, excellent results are obtained across the entire region
between equilibrium and the dissociation limit.Comment: 8 pages, 3 figures and 3 tables. Submitted to JC
Eliminating spin contamination in auxiliary-field quantum Monte Carlo: realistic potential energy curve of F2
The use of an approximate reference state wave function |Phi_r> in electronic
many-body methods can break the spin symmetry of Born-Oppenheimer
spin-independent Hamiltonians. This can result in significant errors,
especially when bonds are stretched or broken. A simple spin-projection method
is introduced for auxiliary-field quantum Monte Carlo (AFQMC) calculations,
which yields spin-contamination-free results, even with a spin-contaminated
|Phi_r>. The method is applied to the difficult F2 molecule, which is unbound
within unrestricted Hartree-Fock (UHF). With a UHF |Phi_r>, spin contamination
causes large systematic errors and long equilibration times in AFQMC in the
intermediate, bond-breaking region. The spin-projection method eliminates these
problems, and delivers an accurate potential energy curve from equilibrium to
the dissociation limit using the UHF |Phi_r>. Realistic potential energy curves
are obtained with a cc-pVQZ basis. The calculated spectroscopic constants are
in excellent agreement with experiment.Comment: 8 pages, 6 figures, submitted to J. Chem. Phy
Interannual Variability and Seasonal Predictability of Wind and Solar Resources
Solar and wind resources available for power generation are subject to variability due to meteorological factors. Here, we use a new global climate reanalysis product, Version 2 of the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA-2), to quantify interannual variability of monthly-mean solar and wind resource from 1980 to 2016 at a resolution of about 0.5 degrees. We find an average coefficient of variation (CV) of 11% for monthly-mean solar radiation and 8% for wind speed. Mean CVs were about 25% greater over ocean than over land and, for land areas, were greatest at high latitude. The correlation between solar and wind anomalies was near zero in the global mean, but markedly positive or negative in some regions. Both wind and solar variability were correlated with values of climate modes such as the Southern Oscillation Index and Arctic Oscillation, with correlations in the Northern Hemisphere generally stronger during winter. We conclude that reanalysis solar and wind fields could be helpful in assessing variability in power generation due to interannual fluctuations in the solar and wind resource. Skillful prediction of these fluctuations seems to be possible, particularly for certain regions and seasons, given the persistence or predictability of climate modes with which these fluctuations are associated
Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis
We extend the recently introduced phaseless auxiliary-field quantum Monte
Carlo (QMC) approach to any single-particle basis, and apply it to molecular
systems with Gaussian basis sets. QMC methods in general scale favorably with
system size, as a low power. A QMC approach with auxiliary fields in principle
allows an exact solution of the Schrodinger equation in the chosen basis.
However, the well-known sign/phase problem causes the statistical noise to
increase exponentially. The phaseless method controls this problem by
constraining the paths in the auxiliary-field path integrals with an
approximate phase condition that depends on a trial wave function. In the
present calculations, the trial wave function is a single Slater determinant
from a Hartree-Fock calculation. The calculated all-electron total energies
show typical systematic errors of no more than a few milli-Hartrees compared to
exact results. At equilibrium geometries in the molecules we studied, this
accuracy is roughly comparable to that of coupled-cluster with single and
double excitations and with non-iterative triples, CCSD(T). For stretched bonds
in HO, our method exhibits better overall accuracy and a more uniform
behavior than CCSD(T).Comment: 11 pages, 5 figures. submitted to JC
Pressure-induced diamond to beta-tin transition in bulk silicon: a near-exact quantum Monte Carlo study
The pressure-induced structural phase transition from diamond to beta-tin in
silicon is an excellent test for theoretical total energy methods. The
transition pressure provides a sensitive measure of small relative energy
changes between the two phases (one a semiconductor and the other a semimetal).
Experimentally, the transition pressure is well characterized.
Density-functional results have been unsatisfactory. Even the generally much
more accurate diffusion Monte Carlo method has shown a noticeable fixed-node
error. We use the recently developed phaseless auxiliary-field quantum Monte
Carlo (AFQMC) method to calculate the relative energy differences in the two
phases. In this method, all but the error due to the phaseless constraint can
be controlled systematically and driven to zero. In both structural phases we
were able to benchmark the error of the phaseless constraint by carrying out
exact unconstrained AFQMC calculations for small supercells. Comparison between
the two shows that the systematic error in the absolute total energies due to
the phaseless constraint is well within 0.5 mHa/atom. Consistent with these
internal benchmarks, the transition pressure obtained by the phaseless AFQMC
from large supercells is in very good agreement with experiment.Comment: 9 pages, 5 figure
Non-equilibrium phase transitions in biomolecular signal transduction
We study a mechanism for reliable switching in biomolecular
signal-transduction cascades. Steady bistable states are created by system-size
cooperative effects in populations of proteins, in spite of the fact that the
phosphorylation-state transitions of any molecule, by means of which the switch
is implemented, are highly stochastic. The emergence of switching is a
nonequilibrium phase transition in an energetically driven, dissipative system
described by a master equation. We use operator and functional integral methods
from reaction-diffusion theory to solve for the phase structure, noise
spectrum, and escape trajectories and first-passage times of a class of minimal
models of switches, showing how all critical properties for switch behavior can
be computed within a unified framework
Rethinking Motor Learning and Savings in Adaptation Paradigms: Model-Free Memory for Successful Actions Combines with Internal Models
SummaryAlthough motor learning is likely to involve multiple processes, phenomena observed in error-based motor learning paradigms tend to be conceptualized in terms of only a single process: adaptation, which occurs through updating an internal model. Here we argue that fundamental phenomena like movement direction biases, savings (faster relearning), and interference do not relate to adaptation but instead are attributable to two additional learning processes that can be characterized as model-free: use-dependent plasticity and operant reinforcement. Although usually “hidden” behind adaptation, we demonstrate, with modified visuomotor rotation paradigms, that these distinct model-based and model-free processes combine to learn an error-based motor task. (1) Adaptation of an internal model channels movements toward successful error reduction in visual space. (2) Repetition of the newly adapted movement induces directional biases toward the repeated movement. (3) Operant reinforcement through association of the adapted movement with successful error reduction is responsible for savings
Plant Driven Movement: Does Plant Quality Affect the Foraging Patterns of Successful Male Sage-Grouse (Centrocercus Urophasianus)?
The structural and dietary quality of plants is highly variable across the landscape and may influence energy acquisition by herbivores needed for energy dependent activities. For sage-grouse, male display efforts are energetically expensive, with successful males expending up to four times their basal metabolic rate to display. Previous work found that males who had the greatest energy expenditure during the lekking season also lost the least weight and foraged farthest from the lek. We hypothesized that the energetic benefit of foraging farther from the lek is due to higher quality food or cover compared to near lek vegetation. To initially test this hypothesis, we quantified the structural and nutritional quality of sagebrush at different distances away from the lek as well as at patches used by sage-grouse for foraging and roosting. We found no difference in density, percent cover, or height of live or dead sagebrush among different distances (edge, 100, 200, 400 or 800 m) away from leks, but there was a trend for plants near the lek edge to have higher crude protein than those farther away from leks. We found no difference in percent grass, percent forbs, volume of sagebrush, or crude protein of sagebrush among forage, roost, or near lek (100 m from edge) patches, but forage patches tended to have taller sagebrush than roost or near lek patches. The preliminary results suggest that selection for off-lek patches by male sage-grouse may not be driven by the structural or nutritional quality of plants. We propose that plant chemical components may be more indicative of off-lek habitat use by male sage-grouse during the lekking period
On the Substitution of Identicals in Counterfactual Reasoning
It is widely held that counterfactuals, unlike attitude ascriptions, preserve the referential transparency of their constituents, i.e., that counterfactuals validate the substitution of identicals when their constituents do. The only putative counterexamples in the literature come from counterpossibles, i.e., counterfactuals with impossible antecedents. Advocates of counterpossibilism, i.e., the view that counterpossibles are not all vacuous, argue that counterpossibles can generate referential opacity. But in order to explain why most substitution inferences into counterfactuals seem valid, counterpossibilists also often maintain that counterfactuals with possible antecedents are transparency‐preserving. I argue that if counterpossibles can generate opacity, then so can ordinary counterfactuals with possible antecedents. Utilizing an analogy between counterfactuals and attitude ascriptions, I provide a counterpossibilist‐friendly explanation for the apparent validity of substitution inferences into counterfactuals. I conclude by suggesting that the debate over counterpossibles is closely tied to questions concerning the extent to which counterfactuals are more like attitude ascriptions and epistemic operators than previously recognized
- …