4,961 research outputs found

    Single hole dynamics in dimerized spin liquids

    Full text link
    The dynamics of a single hole in quantum antiferromagnets is influenced by magnetic fluctuations. In the present work we consider two situations. The first one corresponds to a single hole in the two leg t-J spin ladder. In this case the wave function renormalization is relatively small and the quasiparticle residue of the S=1/2 state remains close to unity. However at large t/J there are higher spin (S=3/2,5/2,..) bound states of the hole with the magnetic excitations, and therefore there is a crossover from quasiparticles with S=1/2 to quasiparticles with higher spin. The second situation corresponds to a single hole in two coupled antiferromagnetic planes very close to the point of antiferromagnetic instability. In this case the hole wave function renormalization is very strong and the quasiparticle residue vanishes at the point of instability.Comment: 12 pages, 3 figure

    Low-energy singlet and triplet excitations in the spin-liquid phase of the two-dimensional J1-J2 model

    Full text link
    We analyze the stability of the spontaneously dimerized spin-liquid phase of the frustrated Heisenberg antiferromagnet - the J1-J2 model. The lowest triplet excitation, corresponding to breaking of a singlet bond, is found to be stable in the region 0.38 < J2/J1 < 0.62. In addition we find a stable low-energy collective singlet mode, which is closely related to the spontaneous violation of the discrete symmetry. Both modes are gapped in the quantum disordered phase and become gapless at the transition point to the Neel ordered phase (J2/J1=0.38). The spontaneous dimerization vanishes at the transition and we argue that the disappearance of dimer order is related to the vanishing of the singlet gap. We also present exact diagonalization data on a small (4x4) cluster which indeed show a structure of the spectrum, consistent with that of a system with a four-fold degenerate (spontaneously dimerized) ground state.Comment: 4 pages, 4 figures, small changes, published versio

    Bound states of magnons in the S=1/2 quantum spin ladder

    Full text link
    We study the excitation spectrum of the two-leg antiferromagnetic S=1/2 Heisenberg ladder. Our approach is based on the description of the excitations as triplets above a strong-coupling singlet ground state. The quasiparticle spectrum is calculated by treating the excitations as a dilute Bose gas with infinite on-site repulsion. We find singlet (S=0) and triplet (S=1) two-particle bound states of the elementary triplets. We argue that bound states generally exist in any dimerized quantum spin model.Comment: 4 REVTeX pages, 4 Postscript figure

    Forming of the Optical Beam with the Rotating Polarization Vector

    Get PDF
    A method for the optical beam production with the rotating polarization vector based on the interference of two beams with the circular polarizations is proposed. The frequency shift between beams is implemented by means of acousto-optic (AO) diffraction. The method is used for the amplitude light modulation with the frequency nf where f is acoustic frequency and n is integer. AO modulators are fabricated from paratellurite crystal. Modulators allow modulating the optical radiation with wavelength of 0.63 mcm at the quadruple frequency of the acoustic wave. The modulation frequency achieves 180 MHz. Keywords: acousto-optic diffraction, Bragg regime, frequency shift, rotating polarization vector

    Low-lying excitations and magnetization process of coupled tetrahedral systems

    Full text link
    We investigate low-lying singlet and triplet excitations and the magnetization process of quasi-1D spin systems composed of tetrahedral spin clusters. For a class of such models, we found various exact low-lying excitations; some of them are responsible for the first-order transition between two different ground states formed by local singlets. Moreover, we find that there are two different kinds of magnetization plateaus which are separated by a first-order transition.Comment: To appear in Phys.Rev.B (Issue 01 August 2002). A short comment is adde

    Spin 1/2 Magnetic Impurity in a 2D Magnetic System Close to Quantum Critical Point

    Full text link
    We consider a magnetic impurity in a spin liquid state of a magnetic system which is close to the quantum phase transition to the magnetically ordered state. There is similarity between this problem and the Kondo problem. We derive the impurity Green's function, consider renormalizations of the magnetic moments of the impurity, calculate critical indexes for the magnetic susceptibilities and finally consider specific heat and magnetic interaction of two impurities.Comment: 9 pages, 9 figure

    Non-transecting anastomotic urethroplasty (surgical atlas)

    Get PDF
    Non-transecting anastomotic urethroplasty – is three types of urethroplasty, which are united on the principle resection of bulbar urethra with sparing of corpus spongiosum and antegrade blood flow through it. The article describes the surgical technique of urethroplasty: dorsal strictureplasty by Heineke–Mikulicz; strictureplasty by Mundy; vessel-sparing anastomotic urethroplasty by Jordan. Obligatory conditions of the non-transecting anastomotic urethroplasty are a non traumatic etiology, length of the stricture not more than 1–1.5 cm, and its localization in the proximal bulbar urethra. Strictureplasty by Heineke–Mikulicz is a dorsal longitudinal incision of the urethra on the area of stricture and subsequent suturing the defect transversely. Strictureplasty by Mundy is a dorsal longitudinal urethrotomy, excision of the affected mucosa inside the lumen of the urethra and transversely urethral closure according to Heineke–Mikulicz, s principle. Vessel-sparing anastomotic urethroplasty by Jordan is circular excision of the urethral mucosa without crossing of corpus spongiosum and incoming into it bulbar arteries and thereby preserving the antegrade blood flow through the urethra
    • …
    corecore