239 research outputs found

    The Nucleon-Nucleon Potential in the Chromo-Dielectric Soliton Model: Statics

    Full text link
    We study the N-N interaction in the framework of the chromo-dielectric soliton model. Here, the long-range parts of the nonabelian gluon self-interactions are assumed to give rise to a color-dielectric function which is parameterized in terms of an effective scalar background field. The six-quark system is confined in a deformed mean field through an effective non-linear interaction between the quarks and the scalar field. The CDM is covariant, respects chiral invariance, leads to absolute color confinement and is free of the spurious long range Van der Waals forces which trouble non-relativistic investigations employing a confining potential. Six-quark molecular-type configurations are generated as a function of deformation and their energies are evaluated in a coupled channel analysis. By using molecular states instead of cluster model wave functions, all important six-quark configurations are properly taken into account. The corresponding Hamiltonian includes the effective interaction between the quarks and the scalar background field and quark-quark interactions generated through one gluon exchange treated in Coulomb gauge. When evaluating the gluonic propagators, the inhomogeneity and deformation of the dielectric medium are taken into account. Results for the adiabatic nucleon-nucleon potential are presented, and the various contributions are discussed. Finally, an outlook is given on how, in the next stage of our investigation, the dynamical effects will be incorporated by employing the generator coordinate method.Comment: 43 pages, REVTeX file followed by 11 uuencoded PostScript figures, DOE/ER/40427-02-N9

    New approach to 4^4He charge distribution

    Get PDF
    We present a study of the 4^4He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the 4^4He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.Comment: 9 pages, LaTeX, 4 figures (Figures 1 and 2 doesn't exist as postscript files : they are only available on request

    Central depression in nuclear density and its consequences for the shell structure of superheavy nuclei

    Get PDF
    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, while flatter density distribution favors N=184 for neutrons and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories.Comment: 5 page

    Quasi-Orthogonality of Some Hypergeometric and qq-Hypergeometric Polynomials

    Get PDF
    We show how to obtain linear combinations of polynomials in an orthogonal sequence {Pn}n0\{P_n\}_{n\geq 0}, such as Qn,k(x)=i=0kan,iPni(x)Q_{n,k}(x)=\sum\limits_{i=0}^k a_{n,i}P_{n-i}(x), an,0an,k0a_{n,0}a_{n,k}\neq0, that characterize quasi-orthogonal polynomials of order kn1k\le n-1. The polynomials in the sequence {Qn,k}n0\{Q_{n,k}\}_{n\geq 0} are obtained from PnP_{n}, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable and these equations are used to prove quasi-orthogonality of order kk. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the end points of the interval of orthogonality of the sequence {Pn}n0\{P_n\}_{n\geq 0}, where possible

    The Nucleon-Nucleon Interaction in the Chromo-Dielectric Soliton Model: Dynamics

    Get PDF
    The present work is an extension of a previous study of the nucleon-nucleon interaction based on the chromo-dielectric soliton model. The former approach was static, leading to an adiabatic potential. Here we perform a dynamical study in the framework of the Generator Coordinate Method. In practice, we derive an approximate Hill-Wheeler differential equation and obtain a local nucleon-nucleon potential as a function of a mean generator coordinate. This coordinate is related to an effective separation distance between the two nucleons by a Fujiwara transformation. This latter relationship is especially useful in studying the quark substructure of light nuclei. We investigate the explicit contribution of the one-gluon exchange part of the six-quark Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are responsible for a significant part of the short-range N-N repulsion.Comment: 16 pages (REVTEX), 6 figures (uuencoded Postscript) optionally included using epsfig.st

    ON THE INTRINSIC CHARM COMPONENT OF THE NUCLEON

    Get PDF
    Using a D\overline D meson cloud model we calculate the squared charm radius of the nucleon . The ratio between this squared radius and the ordinary baryon squared radius is identified with the probability of ``seeing'' the intrinsic charm component of the nucleon. Our estimate is compatible with those used to successfully describe the charm production phenomenology.Comment: 9 pages, 2 figures not included, avaiable from the author

    Virtual Meson Cloud of the Nucleon and Intrinsic Strangeness and Charm

    Get PDF
    We have applied the Meson Cloud Model (MCM) to calculate the charm and strange antiquark distribution in the nucleon. The resulting distribution, in the case of charm, is very similar to the intrinsic charm momentum distribution in the nucleon. This seems to corroborate the hypothesis that the intrinsic charm is in the cloud and, at the same time, explains why other calculations with the MCM involving strange quark distributions fail in reproducing the low x region data. From the intrinsic strange distribution in the nucleon we have extracted the strangeness radius of the nucleon, which is in agreement with other meson cloud calculations.Comment: 9 pages RevTex, 4 figure

    Meson-Baryon-Baryon Vertex Function and the Ward-Takahashi Identity

    Get PDF
    Ohta proposed a solution for the well-known difficulty of satisfying the Ward-Takahashi identity for a photo-meson-baryon-baryon amplitude (γ\gammaMBB) when a dressed meson-baryon-baryon (MBB) vertex function is present. He obtained a form for the γ\gammaMBB amplitude which contained, in addition to the usual pole terms, longitudinal seagull terms which were determined entirely by the MBB vertex function. He arrived at his result by using a Lagrangian which yields the MBB vertex function at tree level. We show that such a Lagrangian can be neither hermitian nor charge conjugation invariant. We have been able to reproduce Ohta's result for the γ\gammaMBB amplitude using the Ward-Takahashi identity and no other assumption, dynamical or otherwise, and the most general form for the MBB and γ\gammaMBB vertices. However, contrary to Ohta's finding, we find that the seagull terms are not robust. The seagull terms extracted from the γ\gammaMBB vertex occur unchanged in tree graphs, such as in an exchange current amplitude. But the seagull terms which appear in a loop graph, as in the calculation of an electromagnetic form factor, are, in general, different. The whole procedure says nothing about the transverse part of the (γ\gammaMBB) vertex and its contributions to the amplitudes in question.Comment: A 20 pages Latex file and 16 Postscript figures in an uuencoded format. Use epsf.sty to include the figures into the Latex fil

    General Relativistic Mean Field Theory for Rotating Nuclei

    Full text link
    We formulate a general relativistic mean field theory for rotating nuclei starting from the special relativistic σω\sigma - \omega model Lagrangian. The tetrad formalism is adopted to generalize the model to the accelerated frame.Comment: 13 pages, REVTeX, no figures, submitted to Phys. Rev. Lett., the word `curved' is replaced by `non-inertial' or `accelerated' in several places to clarify the physical situation interested, some references are added, more detail discussions are given with omitting some redundant sentence
    corecore