80 research outputs found

    Anisotropy in the pion angular distribution of the reaction pp -> pp pi0 at 400 MeV

    Get PDF
    The reaction pp -> pp pi0 was studied with the WASA detector at the CELSIUS storage ring. The center of mass angular distribution of the pi0 was obtained by detection of the gamma decay products together with the two outgoing protons, and found to be anisotropic with a negative second derivative slope, in agreement with the theoretical predictions from a microscopic calculation.Comment: Revtex 4 style, 5 pages 7 figures, PACS numbers:13.60.Le, 13.75.Cs, 21.45.+v, 25.10.+

    Exclusive Measurements of pp -> dpi+pi0: Double-Pionic Fusion without ABC Effect

    Get PDF
    Exclusive measurements of the reaction pp -> dpi+pi0 have been carried out at T_p = 1.1 GeV at the CELSIUS storage ring using the WASA detector. The isovector pi+pi0 channel exhibits no enhancement at low invariant pipi masses, i. e. no ABC effect. The differential distributions are in agreement with the conventional t-channel Delta-Delta excitation process, which also accounts for the observed energy dependence of the total cross section. This is an update of a previously published version -- see important note at the end of the article

    Measurement of the Slope Parameter for the eta->3pi0 Decay in the pp->pp eta Reaction

    Get PDF
    The CELSIUS/WASA setup is used to measure the 3pi0 decay of eta mesons produced in pp interactions with beam kinetic energies of 1.36 and 1.45 GeV. The efficiency-corrected Dalitz plot and density distributions for this decay are shown, together with a fit of the quadratic slope parameter alpha yielding alpha = -0.026 +/- 0.010(stat) +/- 0.010(syst). This value is compared to recent experimental results and theoretical predictions.Comment: 4 pages, 7 Postscript figures, uses revtex4.st

    Genomic and protein structural maps of adaptive evolution of human influenza a virus to increased virulence in the mouse

    Get PDF
    Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV) produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA) receptor and non-structural protein 1 (NS1) interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA) variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA) and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30) suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for studying IAV evolution to increased virulence in the mouse

    Double-Pionic Fusion of Nuclear Systems and the ABCEffect -- Aproaching a Puzzle by Exclusive and Kinematically Complete Measurements

    Get PDF
    The ABC effect - a puzzling low-mass enhancement in the ππ\pi\pi invariant mass spectrum - is well-known from inclusive measurements of two-pion production in nuclear fusion reactions. Here we report on first exclusive and kinematically complete measurements of the most basic double pionic fusion reaction pndπ0π0pn \to d \pi^0\pi^0 at 1.03 and 1.35 GeV. The measurements, which have been carried out at CELSIUS-WASA, reveal the ABC effect to be a (ππ)I=L=0(\pi\pi)_{I=L=0} channel phenomenon associated with both a resonance-like energy dependence in the integral cross section and the formation of a ΔΔ\Delta\Delta system in the intermediate state. A corresponding simple s-channel resonance ansatz provides a surprisingly good description of the data

    Polarisation of the omega meson in the pd-->3He+omega reaction at 1360 and 1450 MeV

    Get PDF
    The tensor polarisation of omega mesons produced in the pd-->3He+omega reaction has been studied at two energies near threshold. The 3He nuclei were detected in coincidence with the pi0pi+pi- or pi0gamma decay products of the omega. In contrast to the case of phi meson production, the omega mesons are found to be unpolarised. This brings into question the applicability of the Okubo-Zweig-Iizuka rule when comparing the production of vector mesons in low energy hadronic reactions.Comment: 11 pages, 4 figure
    corecore