96 research outputs found
Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts
Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with βCD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development
Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors
<p>Abstract</p> <p>Background</p> <p>Ewing sarcoma family of tumors (ESFT), characterized by t(11;22)(q24;q12), is one of the most common tumors of bone in children and young adults. In addition to <it>EWS/FLI1 </it>gene fusion, copy number changes are known to be significant for the underlying neoplastic development of ESFT and for patient outcome. Our genome-wide high-resolution analysis aspired to pinpoint genomic regions of highest interest and possible target genes in these areas.</p> <p>Methods</p> <p>Array comparative genomic hybridization (CGH) and expression arrays were used to screen for copy number alterations and expression changes in ESFT patient samples. A total of 31 ESFT samples were analyzed by aCGH and in 16 patients DNA and RNA level data, created by expression arrays, was integrated. Time of the follow-up of these patients was 5–192 months. Clinical outcome was statistically evaluated by Kaplan-Meier/Logrank methods and RT-PCR was applied on 42 patient samples to study the gene of the highest interest.</p> <p>Results</p> <p>Copy number changes were detected in 87% of the cases. The most recurrent copy number changes were gains at 1q, 2, 8, and 12, and losses at 9p and 16q. Cumulative event free survival (ESFT) and overall survival (OS) were significantly better (P < 0.05) for primary tumors with three or less copy number changes than for tumors with higher number of copy number aberrations. In three samples copy number imbalances were detected in chromosomes 11 and 22 affecting the <it>FLI1 </it>and <it>EWSR1 </it>loci, suggesting that an unbalanced t(11;22) and subsequent duplication of the derivative chromosome harboring fusion gene is a common event in ESFT. Further, amplifications on chromosomes 20 and 22 seen in one patient sample suggest a novel translocation type between <it>EWSR1 </it>and an unidentified fusion partner at 20q. In total 20 novel ESFT associated putative oncogenes and tumor suppressor genes were found in the integration analysis of array CGH and expression data. Quantitative RT-PCR to study the expression levels of the most interesting gene, <it>HDGF</it>, confirmed that its expression was higher than in control samples. However, no association between <it>HDGF </it>expression and patient survival was observed.</p> <p>Conclusion</p> <p>We conclude that array CGH and integration analysis proved to be effective methods to identify chromosome regions and novel target genes involved in the tumorigenesis of ESFT.</p
CD9 Tetraspanin Interacts with CD36 on the Surface of Macrophages: A Possible Regulatory Influence on Uptake of Oxidized Low Density Lipoprotein
CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL
CD36-mediated activation of endothelial cell apoptosis by an N-terminal recombinant fragment of thrombospondin-2 inhibits breast cancer growth and metastasis in vivo
Thus far the clinical benefits seen in breast cancer patients treated with drugs targeting the vascular endothelial growth factor (VEGF) pathway are only modest. Consequently, additional antiangiogenic approaches for treatment of breast cancer need to be investigated. Thrombospondin-2 (TSP-2) has been shown to inhibit tumor growth and angiogenesis with a greater potency than the related molecule TSP-1. The systemic effects of TSP-2 on tumor metastasis and the underlying molecular mechanisms of the antiangiogenic activity of TSP-2 have remained poorly understood. We generated a recombinant fusion protein consisting of the N-terminal region of TSP-2 and the IgG-Fc1 fragment (N-TSP2-Fc) and could demonstrate that the antiangiogenic activity of N-TSP2-Fc is dependent on the CD36 receptor. We found that N-TSP2-Fc inhibited VEGF-induced tube formation of human dermal microvascular endothelial cells (HDMEC) on matrigel in vitro and that concurrent incubation of anti-CD36 antibody with N-TSP2-Fc resulted in tube formation that was comparable to untreated control. N-TSP2-Fc potently induced apoptosis of HDMEC in vitro in a CD36-dependent manner. Moreover, we could demonstrate a CD36 receptor-mediated loss of mitochondrial membrane potential and activation of caspase-3 in HDMEC in vitro. Daily intraperitoneal injections of N-TSP2-Fc resulted in a significant inhibition of the growth of human MDA-MB-435 and MDA-MB-231 tumor cells grown in the mammary gland of immunodeficient nude mice and in reduced tumor vascularization. Finally, increased serum concentrations of N-TSP2-Fc significantly inhibited regional metastasis to lymph nodes and distant metastasis to lung as shown by quantitative real-time alu PCR. These results identify N-TSP2-Fc as a potent systemic inhibitor of tumor metastasis and provide strong evidence for an important role of the CD36 receptor in mediating the antiangiogenic activity of TSP-2
Delayed Cutaneous Wound Healing and Aberrant Expression of Hair Follicle Stem Cell Markers in Mice Selectively Lacking Ctip2 in Epidermis
This is the publisher’s final pdf. The published article is copyrighted by PLoS and can be found at: http://www.plosone.org/home.action.Background: COUP-TF interacting protein 2 [(Ctip2), also known as Bcl11b] is an important regulator of skin homeostasis, and is overexpressed in head and neck cancer. Ctip2(ep-/-) mice, selectively ablated for Ctip2 in epidermal keratinocytes, exhibited impaired terminal differentiation and delayed epidermal permeability barrier (EPB) establishment during development, similar to what was observed in Ctip2 null (Ctip2(-/-)) mice. Considering that as an important role of Ctip2, and the fact that molecular networks which underlie cancer progression partially overlap with those responsible for tissue remodeling, we sought to determine the role of Ctip2 during cutaneous wound healing. \ud
\ud
Methodology/Principal Findings: Full thickness excisional wound healing experiments were performed on Ctip2(L2/L2) and Ctip2(ep-/-) animals per time point and used for harvesting samples for histology, immunohistochemistry (IHC) and immunoblotting. Results demonstrated inherent defects in proliferation and migration of Ctip2 lacking keratinocytes during re-epithelialization. Mutant mice exhibited reduced epidermal proliferation, delayed keratinocyte activation, altered cell-cell adhesion and impaired ECM development. Post wounding, Ctip2(ep-/-) mice wounds displayed lack of E-Cadherin suppression in the migratory tongue, insufficient expression of alpha smooth muscle actin (alpha SMA) in the dermis, and robust induction of K8. Importantly, dysregulated expression of several hair follicle (HF) stem cell markers such as K15, NFATc1, CD133, CD34 and Lrig1 was observed in mutant skin during wound repair. \ud
\ud
Conclusions/Significance: Results confirm a cell autonomous role of keratinocytic Ctip2 to modulate cell migration, proliferation and/or differentiation, and to maintain HF stem cells during cutaneous wounding. Furthermore, Ctip2 in a non-cell autonomous manner regulated granulation tissue formation and tissue contraction during wound closure
Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma
<p>Abstract</p> <p>Background</p> <p>Thrombospondin1 (THBS1), cystene-rich protein 61 (Cyr61) and connective tissue growth factor (CTGF) are all involved in the transforming growth factor-beta (TGF-β) signal pathway, which plays an important role in the tumorigenesis. The purpose of this study is to explore the expression and prognostic significance of these proteins in esophageal squamous cell carcinoma (ESCC).</p> <p>Methods</p> <p>We used immunohistochemistry and western blotting to examine the expression status of THBS1, Cyr61 and CTGF in ESCC. Correlations of THBS1, Cyr61 and CTGF over-expressions with various clinicopathologic factors were also determined by using the Chi-square test or Fisher's exact probability test. Survival analysis was assessed by the Kaplan-Meier analysis and the log-rank test. Relative risk was evaluated by the multivariate Cox proportional hazards model.</p> <p>Results</p> <p>THBS1, Cyr61 and CTGF were all over-expressed in ESCC. THBS1 over-expression was significantly associated with TNM stage (<it>P </it>= 0.029) and regional lymph node involvement (<it>P </it>= 0.026). Kaplan-Meier survival analysis showed that over-expression of THBS1, Cyr61 or CTGF was related to poor survival of ESCC patients (<it>P </it>= 0.042, <it>P </it>= 0.020, <it>P </it>= 0.018, respectively). Multivariate Cox analysis demonstrated that Cyr61 and CTGF were independent factors in prognosis of ESCC.</p> <p>Conclusion</p> <p>Cyr61, CTGF and THBS1 were all over-expressed in ESCC and might be new molecular markers to predict the prognosis of ESCC patients.</p
The role of thrombospondins in wound healing, ischemia, and the foreign body reaction
Thrombospondin (TSP) 1 and TSP2 have been implicated in the regulation of several processes during tissue repair. Due to their matricellular nature, these proteins are thought to modulate cell-matrix interactions through a variety of mechanisms specific to the spatio-temporal context of their expression. Most notably, TSP1 and TSP2 appear to play distinct, non-overlapping roles in the healing of skin wounds. In contrast, both proteins have been implicated as regulators of ischemia-induced angiogenesis. Moreover, TSP2 has been shown to be a critical regulator of angiogenesis in the foreign body response (FBR). In this review, we discuss the role of TSPs in tissue repair and examine the mechanistic data regarding the ability of the thrombospondins to modulate cell-matrix interactions in this context
- …