9 research outputs found

    Variability of allergens in commercial fish extracts for skin prick testing

    No full text
    Background Commercial allergen extracts for allergy skin prick testing (SPT) are widely used for diagnosing fish allergy. However, there is currently no regulatory requirement for standardization of protein and allergen content, potentially impacting the diagnostic reliability of SPTs. We therefore sought to analyse commercial fish extracts for the presence and concentration of fish proteins and in vitro IgE reactivity using serum from fish-allergic patients. Methods Twenty-six commercial fish extracts from five different manufacturers were examined. The protein concentrations were determined, protein compositions analysed by mass spectrometry, followed by SDS-PAGE and subsequent immunoblotting with antibodies detecting 4 fish allergens (parvalbumin, tropomyosin, aldolase and collagen). IgE-reactive proteins were identified using serum from 16 children with confirmed IgE-mediated fish allergy, with focus on cod, tuna and salmon extracts. Results The total protein, allergen concentration and IgE reactivity of the commercial extracts varied over 10-fold between different manufacturers and fish species. The major fish allergen parvalbumin was not detected by immunoblotting in 6/26 extracts. In 7/12 extracts, five known fish allergens were detected by mass spectrometry. For cod and tuna, almost 70% of patients demonstrated the strongest IgE reactivity to collagen, tropomyosin, aldolase A or beta-enolase but not parvalbumin. Conclusions Commercial fish extracts often contain insufficient amounts of important allergens including parvalbumin and collagen, resulting in low IgE reactivity. A comprehensive proteomic approach for the evaluation of SPT extracts for their utility in allergy diagnostics is presented. There is an urgent need for standardized allergen extracts, which will improve the diagnosis and management of fish allergy

    Influence of local microenvironment on the double hydrogen transfer in porphycene

    No full text
    We performed time-resolved transient absorption and fluorescence anisotropy measurements in order to study tautomerization of porphycene in rigid polymer matrices at cryogenic temperatures. Studies were carried out in poly(methyl methacrylate) (PMMA), poly(vinyl butyral) (PVB), and poly(vinyl alcohol) (PVA). The results prove that in all studied media hydrogen tunnelling plays a significant role in the double hydrogen transfer which becomes very sensitive to properties of the environment below approx. 150 K. We also demonstrate that there exist two populations of porphycene molecules in rigid media: “hydrogen-transferring” molecules, in which tautomerization occurs on time scales below 1 ns and “frozen” molecules in which double hydrogen transfer is too slow to be monitored with nanosecond techniques. The number of “frozen” molecules increases when the sample is cooled. We explain this effect by interactions of guest molecules with a rigid host matrix which disturbs symmetry of porphycene and hinders tunnelling. Temperature dependence of the number of hydrogen-transferring molecules suggests that the factor which restores the symmetry of the double-minimum potential well in porphycene are intermolecular vibrations localized in separated regions of the amorphous polymer

    Applied optics to engineering photonics: a retrospective

    No full text
    corecore