300 research outputs found
Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling
The temperature dependence of the magnetic susceptibility, \chi (T), is
investigated for one-dimensional interacting electron systems at
quarter-filling within the Kadanoff-Wilson renormalization-group method.
The forward scattering on the same branch (the g_4-process) is examined
together with the backward (g_1) and forward (g_2) scattering amplitudes on
opposite branches.
In connection with lattice models, we show that \chi (T) is strongly enhanced
by the nearest-neighbor interaction, an enhancement that surpasses one of the
next-nearest-neighbor interaction.
A connection between our predictions for \chi (T) and experimental results
for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical
Society of Japan, vol. 74, No. 1
Unusual Low-Temperature Phase in VO Nanoparticles
We present a systematic investigation of the crystal and electronic structure
and the magnetic properties above and below the metal-insulator transition of
ball-milled VO nanoparticles and VO microparticles. For this research,
we performed a Rietveld analysis of synchrotron radiation x-ray diffraction
data, O x-ray absorption spectroscopy, V resonant inelastic x-ray
scattering, and magnetic susceptibility measurements. This study reveals an
unusual low-temperature phase that involves the formation of an elongated and
less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic
contribution from the nanoparticles. We show that the change in the crystal
structure is consistent with the change in the electronic states around the
Fermi level, which leads us to suggest that the Peierls mechanism contributes
to the energy splitting of the state. Furthermore, we find that the
high-temperature rutile structure of the nanoparticles is almost identical to
that of the microparticles.Comment: 7 pages, 8 figures, 2 table
Peierls instability, periodic Bose-Einstein condensates and density waves in quasi-one-dimensional boson-fermion mixtures of atomic gases
We study the quasi-one-dimensional (Q1D) spin-polarized bose-fermi mixture of
atomic gases at zero temperature. Bosonic excitation spectra are calculated in
random phase approximation on the ground state with the uniform BEC, and the
Peierls instabilities are shown to appear in bosonic collective excitation
modes with wave-number by the coupling between the Bogoliubov-phonon
mode of bosonic atoms and the fermion particle-hole excitations. The
ground-state properties are calculated in the variational method, and,
corresponding to the Peierls instability, the state with a periodic BEC and
fermionic density waves with the period are shown to have a lower
energy than the uniform one. We also briefly discuss the Q1D system confined in
a harmonic oscillator (HO) potential and derive the Peierls instability
condition for it.Comment: 9 pages, 3figure
Density waves in quasi-one-dimensional atomic gas mixture of boson and two-component fermion
We study the density-wave states of quasi-one-dimensional atomic gas mixture
of one- and two-component boson and fermion using the mean-field approximation.
Owing to the Peierls instability in the quasi-one-dimensional fermion system,
the ground state of the system shows the fermion density wave and the periodic
Bose-Einstein condensation induced by the boson-fermion interatomic
interaction. For the two-component fermions, two density waves appear in these
components, and the phase difference between them distinguishes two types of
ground states, the in-phase and the out-phase density-waves. In this paper, a
self-consistent method in the mean-field approximation is presented to treat
the density-wave states in boson-fermion mixture with two-component fermions.
From the analysis of the effective potential and the interaction energies
calculated by this method, the density-waves are shown to appear in the ground
state, which are in-phase or out-phase depending on the strength of the
inter-fermion interaction. It is also shown that the periodic Bose-Einstein
condensate coexists with the in-phase density-wave of fermions, but, in the
case of the out-phase one, only the uniform condensate appears. The phase
diagram of the system is given for the effective coupling constants.Comment: 13 pages, 6 figures, revise
A variational approach to the optimized phonon technique for electron-phonon problems
An optimized phonon approach for the numerical diagonalization of interacting
electron-phonon systems is proposed. The variational method is based on an
expansion in coherent states that leads to a dramatic truncation in the phonon
space. The reliability of the approach is demonstrated for the extended
Holstein model showing that different types of lattice distortions are present
at intermediate electron-phonon couplings as observed in strongly correlated
systems. The connection with the density matrix renormalization group is
discussed.Comment: 4 figures; submitted to Phys. Rev.
Molecular analysis of the cold tolerant Antarctic nematode, Panagrolaimus davidi
Isolated and established in culture from the Antarctic in 1988, the nematode Panagrolaimus davidi has proven to be an ideal model for the study of adaptation to the cold. Not only is it the best-documented example of an organism surviving intracellular freezing but it is also able to undergo cryoprotective dehydration. As part of an ongoing effort to develop a molecular understanding of this remarkable organism, we have assembled both a transcriptome and a set of genomic scaffolds. We provide an overview of the transcriptome and a survey of genes involved in temperature stress. We also explore, in silico, the possibility that P. davidi will be susceptible to an environmental RNAi response, important for further functional studies
First-Principles Study of Electronic Structure in -(BEDT-TTF)I at Ambient Pressure and with Uniaxial Strain
Within the framework of the density functional theory, we calculate the
electronic structure of -(BEDT-TTF)I at 8K and room temperature
at ambient pressure and with uniaxial strain along the - and -axes. We
confirm the existence of anisotropic Dirac cone dispersion near the chemical
potential. We also extract the orthogonal tight-binding parameters to analyze
physical properties. An investigation of the electronic structure near the
chemical potential clarifies that effects of uniaxial strain along the a-axis
is different from that along the b-axis. The carrier densities show
dependence at low temperatures, which may explain the experimental findings not
only qualitatively but also quantitatively.Comment: 10 pages, 7 figure
Role of Phase Variables in Quarter-Filled Spin Density Wave States
Several kinds of spin density wave (SDW) states with both quarter-filled band
and dimerization are reexamined for a one-dimensional system with on-site,
nearest-neighbor and next-nearest-neighbor repulsive interactions, which has
been investigated by Kobayashi et al. (J. Phys. Soc. Jpn. 67 (1998) 1098).
Within the mean-field theory, the ground state and the response to the density
variation are calculated in terms of phase variables, and ,
where expresses the charge fluctuation of SDW and describes the
relative motion between density wave with up spin and that with down spin
respectively. It is shown that the exotic state of coexistence of 2k_F-SDW and
2k_F-charge density wave (CDW) is followed by 4k_F-SDW but not by 4k_F-CDW
where k_F denotes a Fermi wave vector. The harmonic potential with respect to
the variation of and/or disappears for the interactions, which
lead to the boundary between the pure 2k_F-SDW state and the corresponding
coexistent state.Comment: 9 pages, 15 figures, to be published in J. Phys. Soc. Jpn. 69 No.3
(2000) 79
SDW and FISDW transition of (TMTSF)ClO at high magnetic fields
The magnetic field dependence of the SDW transition in (TMTSF)ClO for
various anion cooling rates has been measured, with the field up to 27T
parallel to the lowest conductivity direction . For quenched
(TMTSF)ClO, the SDW transition temperature increases
from 4.5K in zero field up to 8.4K at 27T. A quadratic behavior is observed
below 18T, followed by a saturation behavior. These results are consistent with
the prediction of the mean-field theory. From these behaviors,
is estimated as =13.5K for the perfect nesting case. This
indicates that the SDW phase in quenched (TMTSF)ClO, where is less than 6K, is strongly suppressed by the two-dimensionality of
the system. In the intermediate cooled state in which the SDW phase does not
appear in zero field, the transition temperature for the field-induced SDW
shows a quadratic behavior above 12T and there is no saturation behavior even
at 27T, in contrast to the FISDW phase in the relaxed state. This behavior can
probably be attributed to the difference of the dimerized gap due to anion
ordering.Comment: 4pages,5figures(EPS), accepted for publication in PR
Effects of finite-range interactions on the one-electron spectral properties of TTF-TCNQ
The electronic dispersions of the quasi-one-dimensional organic conductor TTF-TCNQ are studied by angle-resolved photoelectron spectroscopy (ARPES) with higher angular resolution and accordingly smaller step width than in previous studies. Our experimental results suggest that a refinement of the single-band 1D Hubbard model that includes finite-range interactions is needed to explain these photoemission data. To account for the effects of these finite-range interactions we employ a mobile quantum impurity scheme that describes the scattering of fractionalized particles at energies above the standard Tomonaga-Luttinger liquid limit. Our theoretical predictions agree quantitatively with the location in the (k,ω) plane of the experimentally observed ARPES structures at these higher energies. The nonperturbative microscopic mechanisms that control the spectral properties are found to simplify in terms of the exotic scattering of the charge fractionalized particles. We find that the scattering occurs in the unitary limit of (minus) infinite scattering length, which limit occurs within neutron-neutron interactions in shells of neutron stars and in the scattering of ultracold atoms but not in perturbative electronic condensed-matter systems. Our results provide important physical information on the exotic processes involved in the finite-range electron interactions that control the high-energy spectral properties of TTF-TCNQ. Our results also apply to a wider class of 1D and quasi-1D materials and systems that are of theoretical and potential technological interest.We thank Claus S. Jacobsen for providing the single crystals used in our ARPES studies. J.M.P.C. acknowledges the late Adilet Imambekov for discussions that were helpful in writing this paper. He also would like to thank Boston University's Condensed Matter Theory Visitors Program for support and the hospitality of MIT. J.M.P.C. and T.C. acknowledge the support from Fundacao para a Ciencia e Tecnologia (FCT) through the Grants No. UID/FIS/04650/2013 and No. PTDC/FIS-MAC/29291/2017, J.M.P.C. acknowledges that from the FCT Grants No. SFRH/BSAB/142925/2018 and No. POCI-01-0145-FEDER-028887, and T.C. acknowledges the support from the National Natural Science Foundation of China Grant No. 11650110443
- …