81 research outputs found

    Ethyl 3-[(6-chloro­pyridin-3-yl)meth­yl]-2-oxoimidazolidine-1-carboxyl­ate

    Get PDF
    In the title compound, C12H14ClN3O3, the imidazole ring adopts a half-chair conformation. The dihedral angle between the pyridine and imidazole rings is 70.0 (1)°. In the crystal, the molecules are linked by C—H⋯O inter­actions, forming chains parallel to the c axis

    Local endothelial complement activation reverses endothelial quiescence, enabling t-cell homing, and tumor control during t-cell immunotherapy.

    Get PDF
    Cancer immunotherapy relies upon the ability of T cells to infiltrate tumors. The endothelium constitutes a barrier between the tumor and effector T cells, and the ability to manipulate local vascular permeability could be translated into effective immunotherapy. Here, we show that in the context of adoptive T cell therapy, antitumor T cells, delivered at high enough doses, can overcome the endothelial barrier and infiltrate tumors, a process that requires local production of C3, complement activation on tumor endothelium and release of C5a. C5a, in turn, acts on endothelial cells promoting the upregulation of adhesion molecules and T-cell homing. Genetic deletion of C3 or the C5a receptor 1 (C5aR1), and pharmacological blockade of C5aR1, impaired the ability of T cells to overcome the endothelial barrier, infiltrate tumors, and control tumor progression in vivo, while genetic chimera mice demonstrated that C3 and C5aR1 expression by tumor stroma, and not leukocytes, governs T cell homing, acting on the local endothelium. In vitro, endothelial C3 and C5a expressions were required for endothelial activation by type 1 cytokines. Our data indicate that effective immunotherapy is a consequence of successful homing of T cells in response to local complement activation, which disrupts the tumor endothelial barrier

    Design and release profile of timed-release coated granules of systemic insecticide

    No full text
    corecore