23,163 research outputs found
Comparison of Post-injection Site Pain Between Technetium Sulfur Colloid and Technetium Tilmanocept in Breast Cancer Patients Undergoing Sentinel Lymph Node Biopsy.
BackgroundNo prior studies have examined injection pain associated with Technetium-99m Tilmanocept (TcTM).MethodsThis was a randomized, double-blinded study comparing postinjection site pain between filtered Technetium Sulfur Colloid (fTcSC) and TcTM in breast cancer lymphoscintigraphy. Pain was evaluated with a visual analogue scale (VAS) (0-100 mm) and the short-form McGill Pain Questionnaire (SF-MPQ). The primary endpoint was mean difference in VAS scores at 1-min postinjection between fTcSC and TcTM. Secondary endpoints included a comparison of SF-MPQ scores between the groups at 5 min postinjection and construction of a linear mixed effects model to evaluate the changes in pain during the 5-min postinjection period.ResultsFifty-two patients underwent injection (27-fTcSC, 25-TcTM). At 1-min postinjection, patients who received fTcSC experienced a mean change in pain of 16.8 mm (standard deviation (SD) 19.5) compared with 0.2 mm (SD 7.3) in TcTM (p = 0.0002). At 5 min postinjection, the mean total score on the SF-MPQ was 2.8 (SD 3.0) for fTcSC versus 2.1 (SD 2.5) for TcTM (p = 0.36). In the mixed effects model, injection agent (p < 0.001), time (p < 0.001) and their interaction (p < 0.001) were associated with change in pain during the 5-min postinjection period. The model found fTcSC resulted in significantly more pain of 15.2 mm (p < 0.001), 11.3 mm (p = 0.001), and 7.5 mm (p = 0.013) at 1, 2, and 3 min postinjection, respectively.ConclusionsInjection with fTcSC causes significantly more pain during the first 3 min postinjection compared with TcTM in women undergoing lymphoscintigraphy for breast cancer
Molecular astronomy of cool stars and sub-stellar objects
The optical and infrared spectra of a wide variety of `cool' astronomical
objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars,
brown dwarfs and extrasolar planets are reviewed. The review provides the
necessary astronomical background for chemical physicists to understand and
appreciate the unique molecular environments found in astronomy. The
calculation of molecular opacities needed to simulate the observed spectral
energy distributions is discussed
Electromagnetic Scattering from Relativistic Bound States
The quasipotential formalism for elastic scattering from relativistic bound
states is formulated based on the instant constraint in the Breit frame. The
quasipotential electromagnetic current is derived from Mandelstam's five-point
kernel and obeys a two-body Ward identity. Breit-frame wave functions are
obtained directly by solving integral equations with nonzero total
three-momentum, thus accomplishing a dynamical boost. Calculations of
electron-deuteron elastic form factors illustrate the importance of the
dynamical boost versus kinematic boosts of the rest frame wave functions.Comment: RevTeX 3.0 manuscript, 9 pages. UU-file is a single PostScript file
of the manuscript including figures. U. MD PP #93-17
On the accuracy of the melting curves drawn from modelling a solid as an elastic medium
An ongoing problem in the study of a classical many-body system is the
characterization of its equilibrium behaviour by theory or numerical
simulation. For purely repulsive particles, locating the melting line in the
pressure-temperature plane can be especially hard if the interparticle
potential has a softened core or contains some adjustable parameters. A method
is hereby presented that yields reliable melting-curve topologies with
negligible computational effort. It is obtained by combining the Lindemann
melting criterion with a description of the solid phase as an elastic
continuum. A number of examples are given in order to illustrate the scope of
the method and possible shortcomings. For a two-body repulsion of Gaussian
shape, the outcome of the present approach compares favourably with the more
accurate but also more computationally demanding self-consistent harmonic
approximation.Comment: 25 pages, 7 figure
QU Carinae: a SNeIa progenitor?
Optical spectra obtained in 2006-07 of the nova-like cataclysmic variable QU
Car are studied for radial velocities, line profiles, and line identifications.
We are not able to confirm the reported 10.9 hr orbital period from 1982,partly
because our sampling is not ideal for this purpose and also, we suspect,
because our radial velocities are distorted by line profile changes due to an
erratic wind. P-Cygni profiles are found in several of the emission lines,
including those of C IV. Carbon lines are abundant in the spectra, suggesting a
carbon enrichment in the doner star. The presence of [O III] 5007\AA and [N II]
6584\AA is likely due to a diffuse nebula in the vicinity of the system.
The wind signatures in the spectra and the presence of nebular lines are in
agreement with the accretion wind evolution scenario that has been suggested to
lead to SNeIa. We argue that QU Car is a member of the V Sge subclass of CVs,
and a possible SNeIa progenitor. It is shown that the recent light curve of QU
Car has ~1 mag low states, similar to the light curve of V Sge, strengthening
the connection of QU Car with V Sge stars, supersoft x-ray sources, and SNeIa
progenitors.Comment: Accepted in the Astronomical Journal. 11 pages, 3 tables, 5 figure
Instant Two-Body Equation in Breit Frame
A quasipotential formalism for elastic scattering from relativistic bound
states is based on applying an instant constraint to both initial and final
states in the Breit frame. This formalism is advantageous for the analysis of
electromagnetic interactions because current conservation and four momentum
conservation are realized within a three-dimensional formalism. Wave functions
are required in a frame where the total momentum is nonzero, which means that
the usual partial wave analysis is inapplicable. In this work, the
three-dimensional equation is solved numerically, taking into account the
relevant symmetries. A dynamical boost of the interaction also is needed for
the instant formalism, which in general requires that the boosted interaction
be defined as the solution of a four-dimensional equation. For the case of a
scalar separable interaction, this equation is solved and the Lorentz
invariance of the three-dimensional formulation using the boosted interaction
is verified. For more realistic interactions, a simple approximation is used to
characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors
Comment on `Renormalization-Group Calculation of the Dependence on Gravity of the Surface Tension and Bending Rigidity of a Fluid Interface'
It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369
(2001) violates fundamental symmetry requirements for vanishing gravitational
acceleration , so that its results cannot be applied to critical properties
of interfaces for .Comment: A Comment on a recent Letter by J.G. Segovia-L\'opez and V.
Romero-Roch\'{\i}n, Phys. Rev. Lett.86, 2369 (2001). Latex file, 1 page
(revtex
- …