12,019 research outputs found

    A relativistic formalism for computation of irrotational binary stars in quasi equilibrium states

    Get PDF
    We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasi equilibrium states in 3+1 formalism. Equations derived here are different from those previously given by Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numerical relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in first post-Newtonian order.Comment: 5 pages, corrected eqs.(2.10), (2.11) and (3.1

    Angular and Abundance Distribution of High-energy Gamma Rays and Neutrons Simulated by GEANT4 Code for Solar Flares

    Full text link
    In the solar flare observed on June 3, 2012, high energy gamma-rays and neutrons were observed. The event includes a remarkable feature of a high neutron/gamma-ratio in the secondary particles. We have examined whether this high n/γ\gamma-ratio can be explained by simulation. As a result of simulations using the GEANT4 program, the high n/γ\gamma-ratio may be reproduced for the case that helium and other heavy ions were dominantly accelerated in the flare.Comment: submitted to the Proceeding of The 20th International Symposium on Very High Energy Cosmic Ray Interaction (ISVHECRI 2018, Nagoya, Japan), Europian Physics Journa

    The Nagoya cosmic-ray muon spectrometer 3, part 2: Track detector

    Get PDF
    The twelve wide gap spark chambers were utilized as the track detectors of the Nagoya cosmic-ray muon spectrometer not only to obtain the precise locations of particles, but also to get some information about the correspondences between segments of trajectories. The area of each chamber is 150 x 70 sq cm and the width of a gap is 5 cm. The gas used is He at the atmospheric pressure. Each three pairs of them are placed on both sides of the deflection magnet. All images of sparks for each event are projected through the mirror system and recorded by two cameras stereoscopically. The mean detection efficiency of each chamber is 95 + or - 2% and the spacial resolution (jitter and drift) obtained from the prototype-experiment is 0.12 mm. Maximum detectable momentum of the spectrometer is estimated at about 10 TeV/c taking into account these characteristics together with the effects of the energy loss and multiple Coulomb scattering of muons in the iron magnet

    Noiseless Collective Motion out of Noisy Chaos

    Get PDF
    We consider the effect of microscopic external noise on the collective motion of a globally coupled map in fully desynchronized states. Without the external noise a macroscopic variable shows high-dimensional chaos distinguishable from random motion. With the increase of external noise intensity, the collective motion is successively simplified. The number of effective degrees of freedom in the collective motion is found to decrease as logσ2-\log{\sigma^2} with the external noise variance σ2\sigma^2. It is shown how the microscopic noise can suppress the number of degrees of freedom at a macroscopic level.Comment: 9 pages RevTex file and 4 postscript figure

    Coupled charge and valley excitations in graphene quantum Hall ferromagnets

    Full text link
    Graphene is a two-dimensional carbon material with a honeycomb lattice and Dirac-type low-energy spectrum. In a strong magnetic field, where Coulomb interactions dominate against disorder broadening, quantum Hall ferromagnetic states realize at integer fillings. Extending the quantum Hall ferromagnetism to the fractional filling case of massless Dirac fermions, we study the elementally charge excitations which couple with the valley degrees of freedom (so-called valley skyrmions). With the use of the density matrix renomalization group (DMRG) method, the excitation gaps are calculated and extrapolated to the thermodynamic limit. These results exhibit numerical evidences and criterions of the skyrmion excitations in graphene.Comment: 5 pages, 5 figure

    Vsop2/Astro-G Project

    Full text link
    We introduce a new space VLBI project, the Second VLBI Space Observatory Program (VSOP2), following the success of the VLBI Space Observatory Program (VSOP1). VSOP2 has 10 times higher angular resolution, up to about 40 micro arcseconds, 10 times higher frequency up to 43 GHz, and 10 times higher sensitivity compared to VSOP1. Then VSOP2 should become a most powerful tool to observe innermost regions of AGN and astronomical masers. ASTRO-G is a spacecraft for VSOP2 project constructing in ISAS/JAXA since July 2007. ASTRO-G will be launched by JAXA H-IIA rocket in fiscal year 2012. ASTRO-G and ground-based facilities are combined as VSOP2. To achieve the good observation performances, we must realize new technologies. They are large precision antenna, fast-position switching capability, new LNAs, and ultra wide-band down link, etc.. VSOP2 is a huge observation system involving ASTRO-G, ground radio telescopes, tracking stations, and correlators, one institute can not prepare a whole system of VSOP2. Then we must need close international collaboration to get sufficient quality of resultant maps and to give a sufficient quantity of observation time for astronomical community. We formed a new international council to provide guidance on scientific aspects related of VSOP2, currently called the VSOP2 International Science Council (VISC2).Comment: 10 pages, 9 figures, proceedings of The Universe under the Microscope Astrophysics at High Angular Resolutio

    3-D General Relativistic MHD Simulations of Generating Jets

    Get PDF
    We have performed a first fully 3-D GRMHD simulation with Schwarzschild black hole with a free falling corona. The initial simulation results show that a jet is created as in previous axisymmetric simulations. However, the time to generate the jet is longer than in the 2-D simulations. We expect that due to the additional azimuthal dimension the dynamics of jet formation can be modified.Comment: 4 pages Proc. Oxford Radio Galaxy Workshop ed. R. Laing & K. Blundell (San Francisco: PASP) in press (revised
    corecore