1,708 research outputs found
Possible use of self-calibration to reduce systematic uncertainties in determining distance-redshift relation via gravitational radiation from merging binaries
By observing mergers of compact objects, future gravity wave experiments
would measure the luminosity distance to a large number of sources to a high
precision but not their redshifts. Given the directional sensitivity of an
experiment, a fraction of such sources (gold plated -- GP) can be identified
optically as single objects in the direction of the source. We show that if an
approximate distance-redshift relation is known then it is possible to
statistically resolve those sources that have multiple galaxies in the beam. We
study the feasibility of using gold plated sources to iteratively resolve the
unresolved sources, obtain the self-calibrated best possible distance-redshift
relation and provide an analytical expression for the accuracy achievable. We
derive lower limit on the total number of sources that is needed to achieve
this accuracy through self-calibration. We show that this limit depends
exponentially on the beam width and give estimates for various experimental
parameters representative of future gravitational wave experiments DECIGO and
BBO.Comment: 6 pages, 2 figures, accepted for publication in PR
Evolution of perturbations in distinct classes of canonical scalar field models of dark energy
Dark energy must cluster in order to be consistent with the equivalence
principle. The background evolution can be effectively modelled by either a
scalar field or by a barotropic fluid.The fluid model can be used to emulate
perturbations in a scalar field model of dark energy, though this model breaks
down at large scales. In this paper we study evolution of dark energy
perturbations in canonical scalar field models: the classes of thawing and
freezing models.The dark energy equation of state evolves differently in these
classes.In freezing models, the equation of state deviates from that of a
cosmological constant at early times.For thawing models, the dark energy
equation of state remains near that of the cosmological constant at early times
and begins to deviate from it only at late times.Since the dark energy equation
of state evolves differently in these classes,the dark energy perturbations too
evolve differently. In freezing models, since the equation of state deviates
from that of a cosmological constant at early times, there is a significant
difference in evolution of matter perturbations from those in the cosmological
constant model.In comparison, matter perturbations in thawing models differ
from the cosmological constant only at late times. This difference provides an
additional handle to distinguish between these classes of models and this
difference should manifest itself in the ISW effect.Comment: 11 pages, 6 figures, accepted for publication in Phys. Rev.
Cosmic Acceleration Data and Bulk-Brane Energy Exchange
We consider a braneworld model with bulk-brane energy exchange. This allows
for crossing of the w=-1 phantom divide line without introducing phantom energy
with quantum instabilities. We use the latest SnIa data included in the Gold06
dataset to provide an estimate of the preferred parameter values of this
braneworld model. We use three fitting approaches which provide best fit
parameter values and hint towards a bulk energy component that behaves like
relativistic matter which is propagating in the bulk and is moving at a speed v
along the fifth dimension, while the bulk-brane energy exchange component
corresponds to negative pressure and signifies energy flowing from the bulk
into the brane. We find that the best fit effective equation of state parameter
marginally crosses the phantom divide line w=-1. Thus, we have
demonstrated both the ability of this class of braneworld models to provide
crossing of the phantom divide and also that cosmological data hint towards
natural values for the model parameters.Comment: 12 pages, 2 figures, added comments, references update
Scalar Field Dark Energy Perturbations and their Scale Dependence
We estimate the amplitude of perturbation in dark energy at different length
scales for a quintessence model with an exponential potential. It is shown that
on length scales much smaller than hubble radius, perturbation in dark energy
is negligible in comparison to that in in dark matter. However, on scales
comparable to the hubble radius () the
perturbation in dark energy in general cannot be neglected. As compared to the
CDM model, large scale matter power spectrum is suppressed in a
generic quintessence dark energy model. We show that on scales , this suppression is primarily due to different background
evolution compared to CDM model. However, on much larger scales
perturbation in dark energy can effect matter power spectrum significantly.
Hence this analysis can act as a discriminator between CDM model and
other generic dark energy models with .Comment: 12 pages, 13 figures, added new section, accepted for publication in
Phys. Rev.
Curvature driven acceleration : a utopia or a reality ?
The present work shows that a combination of nonlinear contribution from the
Ricci curvature in Einstein field equations can drive a late time acceleration
of expansion of the universe. The transit from the decelerated to the
accelerated phase of expansion takes place smoothly without having to resort to
a study of asymptotic behaviour. This result emphasizes the need for thorough
and critical examination of models with nonlinear contribution from the
curvature.Comment: 8 pages, 4 figure
Quantum effects, soft singularities and the fate of the universe in a braneworld cosmology
We examine a class of braneworld models in which the expanding universe
encounters a "quiescent" future singularity. At a quiescent singularity, the
energy density and pressure of the cosmic fluid as well as the Hubble parameter
remain finite while all derivatives of the Hubble parameter diverge (i.e.,
, , etc. ). Since the Kretschmann invariant
diverges () at the singularity, one expects
quantum effects to play an important role as the quiescent singularity is
approached. We explore the effects of vacuum polarization due to massless
conformally coupled fields near the singularity and show that these can either
cause the universe to recollapse or, else, lead to a softer singularity at
which , , and remain finite while {\dddot H} and
higher derivatives of the Hubble parameter diverge. An important aspect of the
quiescent singularity is that it is encountered in regions of low density,
which has obvious implications for a universe consisting of a cosmic web of
high and low density regions -- superclusters and voids. In addition to vacuum
polarization, the effects of quantum particle production of non-conformal
fields are also likely to be important. A preliminary examination shows that
intense particle production can lead to an accelerating universe whose Hubble
parameter shows oscillations about a constant value.Comment: 19 pages, 3 figures, text slightly improved and references added.
Accepted for publication in Classical and Quantum Gravit
Gravitational instability on the brane: the role of boundary conditions
An outstanding issue in braneworld theory concerns the setting up of proper
boundary conditions for the brane-bulk system. Boundary conditions (BC's)
employing regulatory branes or demanding that the bulk metric be nonsingular
have yet to be implemented in full generality. In this paper, we take a
different route and specify boundary conditions directly on the brane thereby
arriving at a local and closed system of equations (on the brane). We consider
a one-parameter family of boundary conditions involving the anisotropic stress
of the projection of the bulk Weyl tensor on the brane and derive an exact
system of equations describing scalar cosmological perturbations on a generic
braneworld with induced gravity. Depending upon our choice of boundary
conditions, perturbations on the brane either grow moderately (region of
stability) or rapidly (instability). In the instability region, the evolution
of perturbations usually depends upon the scale: small scale perturbations grow
much more rapidly than those on larger scales. This instability is caused by a
peculiar gravitational interaction between dark radiation and matter on the
brane. Generalizing the boundary conditions obtained by Koyama and Maartens, we
find for the Dvali-Gabadadze-Porrati model an instability, which leads to a
dramatic scale-dependence of the evolution of density perturbations in matter
and dark radiation. A different set of BC's, however, leads to a more moderate
and scale-independent growth of perturbations. For the mimicry braneworld,
which expands like LCDM, this class of BC's can lead to an earlier epoch of
structure formation.Comment: 35 pages, 9 figures, an appendix and references added, version to be
published in Classical and Quantum Gravit
- …