1,691 research outputs found

    Electron-Electron Interactions on the Edge States of Graphene: A Many Body Configuration Interaction Study

    Full text link
    We have studied zigzag and armchair graphene nano ribbons (GNRs), described by the Hubbard Hamiltonian using quantum many body configuration interaction methods. Due to finite termination, we find that the bipartite nature of the graphene lattice gets destroyed at the edges making the ground state of the zigzag GNRs a high spin state, whereas the ground state of the armchair GNRs remains a singlet. Our calculations of charge and spin densities suggest that, although the electron density prefers to accumulate on the edges, instead of spin polarization, the up and down spins prefer to mix throughout the GNR lattice. While the many body charge gap results in insulating behavior for both kinds of GNRs, the conduction upon application of electric field is still possible through the edge channels because of their high electron density. Analysis of optical states suggest differences in quantum efficiency of luminescence for zigzag and armchair GNRs, which can be probed by simple experiments.Comment: 5 pages, 4 figure

    Optical conductivity in the CuO double chains of PrBa_2Cu_4O_8: Consequences of charge fluctuation

    Full text link
    We calculate the optical conductivity of the CuO double chains of PrBa2_2Cu4_4O8_8 by the mean-field approximation for the coupled two-chain Hubbard model around quarter filling. We show that the ∼\sim40 meV peak structure, spectral shape, and small Drude weight observed in experiment are reproduced well by the present calculation provided that the stripe-type charge ordering presents. We argue that the observed anomalous optical response may be due to the presence of stripe-type fluctuations of charge carriers in the CuO double chains; the fast time scale of the optical measurement should enable one to detect slowly fluctuating order parameters as virtually a long-range order.Comment: 7 pages, 5 eps figure

    A Model Study of the Low-Energy Charge Dynamics of NaV_2O_5

    Full text link
    An exact-diagonalization technique on small clusters is used to calculate the dynamical density correlation functions of the dimerized t-J chain and coupled anisotropic t-J ladders (trellis lattice) at quarter filling, i.e., the systems regarded as a network of pairs (dimers or rungs) of sites coupled weakly via the hopping and exchange interactions. We thereby demonstrate that the intersite Coulomb repulsions between the pairs induce a low-energy collective mode in the charge excitations of the systems where the internal charge degrees of freedom of the pairs play an essential role. Implications to the electronic states of NaV_2O_5, i.e., fluctuations of the valence state of V ions and phase transition as a charge ordering, are discussed.Comment: 4 pages, 4 gif figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to [email protected]

    Phase diagram of the one-dimensional Hubbard model with next-nearest-neighbor hopping

    Full text link
    We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping integrals by using the density-matrix renormalization group (DMRG) method and Hartree-Fock approximation. Based on the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter, we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase, singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple model in the strong-coupling regime.Comment: 11 pages, 8 figure

    Charge Ordering in the One-Dimensional Extended Hubbard Model: Implication to the TMTTF Family of Organic Conductors

    Full text link
    We study the charge ordering (CO) in the one-dimensional (1D) extended Hubbard model at quarter filling where the nearest-neighbor Coulomb repulsion and dimerization in the hopping parameters are included. Using the cluster mean-field approximation to take into account the effect of quantum fluctuations, we determine the CO phase boundary of the model in the parameter space at T=0 K. We thus find that the dimerization suppresses the stability of the CO phase strongly, and in consequence, the realistic parameter values for quasi-1D organic materials such as (TMTTF)2_2PF6_6 are outside the region of CO. We suggest that the long-range Coulomb interaction between the chains should persist to stabilize the CO phase.Comment: 5 pages, 4 eps figures, to appear in 15 Nov. 2001 issue of PR

    Brueckner-Goldstone perturbation theory for the half-filled Hubbard model in infinite dimensions

    Full text link
    We use Brueckner-Goldstone perturbation theory to calculate the ground-state energy of the half-filled Hubbard model in infinite dimensions up to fourth order in the Hubbard interaction. We obtain the momentum distribution as a functional derivative of the ground-state energy with respect to the bare dispersion relation. The resulting expressions agree with those from Rayleigh-Schroedinger perturbation theory. Our results for the momentum distribution and the quasi-particle weight agree very well with those obtained earlier from Feynman-Dyson perturbation theory for the single-particle self-energy. We give the correct fourth-order coefficient in the ground-state energy which was not calculated accurately enough from Feynman-Dyson theory due to the insufficient accuracy of the data for the self-energy, and find a good agreement with recent estimates from Quantum Monte-Carlo calculations.Comment: 15 pages, 8 fugures, submitted to JSTA
    • …
    corecore