183 research outputs found

    On the role of recombination in common-envelope ejections

    Full text link
    The energy budget in common-envelope events (CEEs) is not well understood, with substantial uncertainty even over to what extent the recombination energy stored in ionised hydrogen and helium might be used to help envelope ejection. We investigate the reaction of a red-giant envelope to heating which mimics limiting cases of energy input provided by the orbital decay of a binary during a CEE, specifically during the post-plunge-in phase during which the spiral-in has been argued to occur on a time-scale longer than dynamical. We show that the outcome of such a CEE depends less on the total amount of energy by which the envelope is heated than on how rapidly the energy was transferred to the envelope and on where the envelope was heated. The envelope always becomes dynamically unstable before receiving net heat energy equal to the envelope's initial binding energy. We find two types of outcome, both of which likely lead to at least partial envelope ejection: "runaway" solutions in which the expansion of the radius becomes undeniably dynamical, and superficially "self-regulated" solutions, in which the expansion of the stellar radius stops but a significant fraction of the envelope becomes formally dynamically unstable. Almost the entire reservoir of initial helium recombination energy is used for envelope expansion. Hydrogen recombination is less energetically useful, but is nonetheless important for the development of the dynamical instabilities. However, this result requires the companion to have already plunged deep into the envelope; therefore this release of recombination energy does not help to explain wide post-common-envelope orbits.Comment: 17 pages, 10 figures, submitted to MNRAS. Comments are welcom

    Eclipsing binaries in extrasolar planet transit surveys: the case of SuperWASP

    Full text link
    Using a comprehensive binary population synthesis scheme, we investigate the statistical properties of a sample of eclipsing binaries that is detectable by an idealised extrasolar planet transit survey with specifications broadly similar to those of the SuperWASP (Wide Angle Search for Planets) project. In this idealised survey the total number of detectable single stars in the Galactic disc is of the order of 10^6-10^7, while, for a flat initial mass ratio distribution, the total number of detectable eclipsing binaries is of the order of 10^4-10^5. The majority of the population of detectable single stars is made up of main-sequence stars (60%), horizontal-branch stars (20%), and giant-branch stars (10%). The largest contributions to the population of detectable eclipsing binaries stem from detached double main-sequence star binaries (60%), detached giant-branch main-sequence star binaries (20%), and detached horizontal-branch main-sequence star binaries (10%). The ratio of the number of eclipsing binaries to the number of single stars detectable by the idealised SuperWASP survey varies by less than a factor of 2.5 across the sky, and decreases with increasing Galactic latitude. It is found to be largest in the direction of the Galactic longitude l=-7.5deg and the Galactic latitude b=-22.5deg. We also show that the fractions of systems in different subgroups of eclipsing binaries are sensitive to the adopted initial mass ratio distribution, which is one of the poorest constrained input parameters in present-day binary population synthesis calculations. This suggests that once statistically meaningful results from transit surveys are available, they will be able to significantly improve the predictive power of population synthesis studies of interacting binaries and related objects. (abridged)Comment: Accepted for publication in MNRA

    Observations of Doppler Boosting in Kepler Lightcurves

    Get PDF
    Among the initial results from Kepler were two striking lightcurves, for KOI 74 and KOI 81, in which the relative depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large that we can use it to infer a radial velocity amplitude accurate to 1 km/s. As far as we are aware, this is the first time a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22+/-0.03 Msun. We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.Comment: 8 pages, 4 figures, ApJ 715, 51 (v4 is updated to match the published version, including a note added in proof with measured projected rotational velocities)

    Luminous Blue Variables and superluminous supernovae from binary mergers

    Full text link
    Evidence suggests that the direct progenitor stars of some core-collapse supernovae (CCSNe) are luminous blue variables (LBVs), perhaps including some `superluminous supernovae' (SLSNe). We examine models in which massive stars gain mass soon after the end of core hydrogen burning. These are mainly intended to represent mergers following a brief contact phase during early Case B mass transfer, but may also represent stars which gain mass in the Hertzsprung Gap or extremely late during the main-sequence phase for other reasons. The post-accretion stars spend their core helium-burning phase as blue supergiants (BSGs), and many examples are consistent with being LBVs at the time of core collapse. Other examples are yellow supergiants at explosion. We also investigate whether such post-accretion stars may explode successfully after core collapse. The final core properties of post-accretion models are broadly similar to those of single stars with the same initial mass as the pre-merger primary star. More surprisingly, when early Case B accretion does affect the final core properties, the effect appears likely to favour a successful SN explosion, i.e., to make the core properties more like those of a lower-mass single star. However, the detailed structures of these cores sometimes display qualitative differences to any single-star model we have calculated. The rate of appropriate binary mergers may match the rate of SNe with immediate LBV progenitors; for moderately optimistic assumptions we estimate that the progenitor birthrate is ~1% of the CCSN rate.Comment: Accepted to The Astrophysical Journal. 24 page

    The Cosmic Carbon Footprint of Massive Stars Stripped in Binary Systems

    Get PDF
    The cosmic origin of carbon, a fundamental building block of life, is still uncertain. Yield predictions for massive stars are almost exclusively based on single-star models, even though a large fraction interact with a binary companion. Using the MESA stellar evolution code, we predict the amount of carbon ejected in the winds and supernovae of single and binary-stripped stars at solar metallicity. We find that binary-stripped stars are twice as efficient at producing carbon (1.5–2.6 times, depending on choices regarding the slope of the initial mass function and black hole formation). We confirm that this is because the convective helium core recedes in stars that have lost their hydrogen envelope, as noted previously. The shrinking of the core disconnects the outermost carbon-rich layers created during the early phase of helium burning from the more central burning regions. The same effect prevents carbon destruction, even when the supernova shock wave passes. The yields are sensitive to the treatment of mixing at convective boundaries, specifically during carbon-shell burning (variations up to 40%), and improving upon this should be a central priority for more reliable yield predictions. The yields are robust (variations less than 0.5%) across our range of explosion assumptions. Black hole formation assumptions are also important, implying that the stellar graveyard now explored by gravitational-wave detections may yield clues to better understand the cosmic carbon production. Our findings also highlight the importance of accounting for binary-stripped stars in chemical yield predictions and motivates further studies of other products of binary interactions

    Models of Ultraluminous X-Ray Sources with Intermediate-Mass Black Holes

    Full text link
    We have computed models for ultraluminous X-ray sources ("ULXs") consisting of a black-hole accretor of intermediate mass ("IMBH"; e.g., ~1000 Msun) and a captured donor star. For each of four different sets of initial donor masses and orbital separations, we computed 30,000 binary evolution models using a full Henyey stellar evolution code. To our knowledge this is the first time that a population of X-ray binaries this large has been carried out with other than approximation methods, and it serves to demonstrate the feasibility of this approach to large-scale population studies of mass-transfer binaries. In the present study, we find that in order to have a plausible efficiency for producing active ULX systems with IMBHs having luminosities > 10^{40} ergs/sec, there are two basic requirements for the capture of companion/donor stars. First, the donor stars should be massive, i.e., > 8 Msun. Second, the initial orbital separations, after circularization, should be close, i.e., < 6-30 times the radius of the donor star when on the main sequence. Even under these optimistic conditions, we show that the production rate of IMBH-ULX systems may fall short of the observed values by factors of 10-100.Comment: 5 pages, 2 figures, submitted to Ap

    Aspherical supernova explosions and formation of compact black hole low-mass X-ray binaries

    Full text link
    It has been suggested that black-hole low-mass X-ray binaries (BHLMXBs) with short orbital periods may have evolved from BH binaries with an intermediate-mass secondary, but the donor star seems to always have higher effective temperatures than measured in BHLMXBs (Justham, Rappaport & Podsiadlowski 2006). Here we suggest that the secondary star is originally an intermediate-mass (\sim 2-5 M_{\sun}) star, which loses a large fraction of its mass due to the ejecta impact during the aspherical SN explosion that produced the BH. The resulted secondary star could be of low-mass (\la 1 M_{\sun}). Magnetic braking would shrink the binary orbit, drive mass transfer between the donor and the BH, producing a compact BHLMXB.Comment: 4 pages, accepted for publication in MNRAS Letter
    • …
    corecore