24,997 research outputs found
Enhancement of Secrecy of Block Ciphered Systems by Deliberate Noise
This paper considers the problem of end-end security enhancement by resorting
to deliberate noise injected in ciphertexts. The main goal is to generate a
degraded wiretap channel in application layer over which Wyner-type secrecy
encoding is invoked to deliver additional secure information. More
specifically, we study secrecy enhancement of DES block cipher working in
cipher feedback model (CFB) when adjustable and intentional noise is introduced
into encrypted data in application layer. A verification strategy in exhaustive
search step of linear attack is designed to allow Eve to mount a successful
attack in the noisy environment. Thus, a controllable wiretap channel is
created over multiple frames by taking advantage of errors in Eve's
cryptanalysis, whose secrecy capacity is found for the case of known channel
states at receivers. As a result, additional secure information can be
delivered by performing Wyner type secrecy encoding over super-frames ahead of
encryption, namely, our proposed secrecy encoding-then-encryption scheme. These
secrecy bits could be taken as symmetric keys for upcoming frames. Numerical
results indicate that a sufficiently large secrecy rate can be achieved by
selective noise addition.Comment: 11 pages, 8 figures, journa
Two-dimensional small-world networks: navigation with local information
Navigation process is studied on a variant of the Watts-Strogatz small world
network model embedded on a square lattice. With probability , each vertex
sends out a long range link, and the probability of the other end of this link
falling on a vertex at lattice distance away decays as .
Vertices on the network have knowledge of only their nearest neighbors. In a
navigation process, messages are forwarded to a designated target. For and , a scaling relation is found between the average actual
path length and , where is the average length of the additional long
range links. Given , dynamic small world effect is observed, and the
behavior of the scaling function at large enough is obtained. At and 3, this kind of scaling breaks down, and different functions of the
average actual path length are obtained. For , the average actual
path length is nearly linear with network size.Comment: Accepted for publication in Phys. Rev.
The vortex dynamics of a Ginzburg-Landau system under pinning effect
It is proved that the vortices are attracted by impurities or inhomogeities
in the superconducting materials. The strong H^1-convergence for the
corresponding Ginzburg-Landau system is also proved.Comment: 23page
Eddy current generation enhancement using ferrite for electromagnetic acoustic transduction
Eddy currents are generated in an electrically conducting surface as a step in electromagnetic acoustic transduction (EAT). In eddy current testing, wire coils are often wound onto a ferrite core to increase the generated eddy current. With EAT, increased coil inductance is unacceptable as it leads to a reduction in the amplitude of a given frequency of eddy current from a limited voltage source, particularly where the current arises from capacitor discharge. The authors present a method for EAT where ferrite is used to increase the eddy current amplitude without significantly increasing coil inductance or changing the frequency content of the eddy current
Statistical Mechanical Treatments of Protein Amyloid Formation
Protein aggregation is an important field of investigation because it is
closely related to the problem of neurodegenerative diseases, to the
development of biomaterials, and to the growth of cellular structures such as
cyto-skeleton. Self-aggregation of protein amyloids, for example, is a
complicated process involving many species and levels of structures. This
complexity, however, can be dealt with using statistical mechanical tools, such
as free energies, partition functions, and transfer matrices. In this article,
we review general strategies for studying protein aggregation using statistical
mechanical approaches and show that canonical and grand canonical ensembles can
be used in such approaches. The grand canonical approach is particularly
convenient since competing pathways of assembly and dis-assembly can be
considered simultaneously. Another advantage of using statistical mechanics is
that numerically exact solutions can be obtained for all of the thermodynamic
properties of fibrils, such as the amount of fibrils formed, as a function of
initial protein concentration. Furthermore, statistical mechanics models can be
used to fit experimental data when they are available for comparison.Comment: Accepted to IJM
A Statistical Mechanical Approach to Protein Aggregation
We develop a theory of aggregation using statistical mechanical methods. An
example of a complicated aggregation system with several levels of structures
is peptide/protein self-assembly. The problem of protein aggregation is
important for the understanding and treatment of neurodegenerative diseases and
also for the development of bio-macromolecules as new materials. We write the
effective Hamiltonian in terms of interaction energies between protein
monomers, protein and solvent, as well as between protein filaments. The grand
partition function can be expressed in terms of a Zimm-Bragg-like transfer
matrix, which is calculated exactly and all thermodynamic properties can be
obtained. We start with two-state and three-state descriptions of protein
monomers using Potts models that can be generalized to include q-states, for
which the exactly solvable feature of the model remains. We focus on n X N
lattice systems, corresponding to the ordered structures observed in some real
fibrils. We have obtained results on nucleation processes and phase diagrams,
in which a protein property such as the sheet content of aggregates is
expressed as a function of the number of proteins on the lattice and
inter-protein or interfacial interaction energies. We have applied our methods
to A{\beta}(1-40) and Curli fibrils and obtained results in good agreement with
experiments.Comment: 13 pages, 8 figures, accepted to J. Chem. Phy
- …