19,157 research outputs found

    Building a 3.5 m prototype interferometer for the Q & A vacuum birefringence experiment and high precision ellipsometry

    Full text link
    We have built and tested a 3.5 m high-finesse Fabry-Perot prototype inteferometer with a precision ellipsometer for the QED test and axion search (Q & A) experiment. We use X-pendulum-double-pendulum suspension designs and automatic control schemes developed by the gravitational-wave detection community. Verdet constant and Cotton-Mouton constant of the air are measured as a test. Double modulation with polarization modulation 100 Hz and magnetic-field modulation 0.05 Hz gives 10^{-7} rad phase noise for a 44-minute integration.Comment: This draft has been presented in the 5th Edoardo Amaldi Conference on Gravitational Wave

    Substrate effects on quasiparticles and excitons in graphene nanoflakes

    Get PDF
    The effects of substrate on electronic and optical properties of triangular and hexagonal graphene nanoflakes with armchair edges are investigated by using a configuration interaction approach beyond double excitation scheme. The quasiparticle correction to the energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interactions and exhibit similar dependence on the dielectric constant of the substrate, which leads to a cancellation of their contributions to the optical gap. As a result, the optical gaps are shown to be insensitive to the dielectric environment and unexpectedly close to the single-particle gaps.Comment: 4 pages, 4 figure

    Neutrino masses and mixings

    Get PDF
    We propose a novel theoretical understanding of neutrino masses and mixings, which is attributed to the intrinsic vector-like feature of the regularized Standard Model at short distances. We try to explain the smallness of Dirac neutrino masses and the decoupling of the right-handed neutrino as a free particle. Neutrino masses and mixing angles are completely related to each other in the Schwinger-Dyson equations for their self-energy functions. The solutions to these equations and a possible pattern of masses and mixings are discussed.Comment: LaTex 11 page

    Spin states and persistent currents in a mesoscopic ring with an embedded magnetic impurity

    Full text link
    Spin states and persistent currents are investigated theoretically in a mesoscopic ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent ÎŽ\delta-potential for electrons and results in gaps in the energy spectrum, consequently suppresses the oscillation of the persistent currents. The competition between the Zeeman splittings and the ss-dd exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the ÎŽ\delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.Comment: 8 pages, 11 figure

    The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    Full text link
    We utilize a fractional exclusion statistics of Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behavior, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behavior of the isochore heat capacity for a trapped unitary Fermi gas is also analyzed.Comment: 6 pages, 6 figure

    Spin states and persistent currents in mesoscopic rings: spin-orbit interactions

    Full text link
    We investigate theoretically electron spin states in one dimensional (1D) and two dimensional (2D) hard-wall mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI) in a perpendicular magnetic field. The Hamiltonian of the RSOI alone is mathematically equivalent to that of the DSOI alone using an SU(2) spin rotation transformation. Our theoretical results show that the interplay between the RSOI and DSOI results in an effective periodic potential, which consequently leads to gaps in the energy spectrum. This periodic potential also weakens and smoothens the oscillations of the persistent charge current (CC) and spin current (SC) and results in the localization of electrons. For a 2D ring with a finite width, higher radial modes destroy the periodic oscillations of persistent currents.Comment: 12 pages, 14 figure

    QCD Effects in High Energy Processes

    Full text link
    In this talk, some important QCD effects in Higgs physics, supersymmetry and top physics, as well as the factorization and resummation techniques in QCD are reviewed.Comment: LaTeX, 13 pages, uses ws-ijmpa.cls. Based on an invited talk at the International Conference on QCD and Hadronic Physics, Beijing, China, June 16--20, 2005. Minor change

    Fluctuations in a diffusive medium with gain

    Full text link
    We present a stochastic model for amplifying, diffusive media like, for instance, random lasers. Starting from a simple random-walk model, we derive a stochastic partial differential equation for the energy field with contains a multiplicative random-advection term yielding intermittency and power-law distributions of the field itself. Dimensional analysis indicate that such features are more likely to be observed for small enough samples and in lower spatial dimensions

    The detection of lubricating oil viscosity changes in gearbox transmission systems driven by sensorless variable speed drives using electrical supply parameters

    Get PDF
    Lubrication oil plays a decisive role to maintain a reliable and efficient operation of gear transmissions. Many offline methods have been developed to monitor the quality of lubricating oils. This work focus on developing a novel online method to diagnose oil degradation based on the measurements from power supply system to the gearbox. Experimental studies based on an 10kW industrial gearbox fed by a sensorless variable speed drive (VSD) shows that measurable changes in both static power and dynamic behaviour are different with lube oils tested. Therefore, it is feasible to use the static power feature to indicate viscosity changes at low and moderate operating speeds. In the meantime, the dynamic feature can separate viscosity changes for all different tested cases

    Leibniz 2-algebras and twisted Courant algebroids

    Full text link
    In this paper, we give the categorification of Leibniz algebras, which is equivalent to 2-term sh Leibniz algebras. They reveal the algebraic structure of omni-Lie 2-algebras introduced in \cite{omniLie2} as well as twisted Courant algebroids by closed 4-forms introduced in \cite{4form}. We also prove that Dirac structures of twisted Courant algebroids give rise to 2-term L∞L_\infty-algebras and geometric structures behind them are exactly HH-twisted Lie algebroids introduced in \cite{Grutzmann}.Comment: 22 pages, to appear in Comm. Algebr
    • 

    corecore