2,232 research outputs found

    Cluster Morphologies and Model-independent Y_(SZ) Estimates from Bolocam Sunyaev-Zel'dovich Images

    Get PDF
    We present initial results from our ongoing program to image the Sunyaev-Zel'dovich (SZ) effect in galaxy clusters at 143 GHz using Bolocam; five clusters and one blank field are described in this manuscript. The images have a resolution of 58 arcsec and a radius of ≃ 6-7 arcmin, which is approximately r_(500)-2r_(500) for these clusters. We effectively high-pass filter our data in order to subtract noise sourced by atmospheric fluctuations, but we are able to obtain unbiased images of the clusters by deconvolving the effects of this filter. The beam-smoothed rms is ≃ 10 μK_(CMB) in these images; with this sensitivity, we are able to detect the SZ signal to beyond r_(500) in binned radial profiles. We have fit our images to beta and Nagai models, fixing spherical symmetry or allowing for ellipticity in the plane of the sky, and we find that the best-fit parameter values are in general consistent with those obtained from other X-ray and SZ data. Our data show no clear preference for the Nagai model or the beta model due to the limited spatial dynamic range of our images. However, our data show a definitive preference for elliptical models over spherical models, quantified by an F ratio of ≃ 20 for the two models. The weighted mean ellipticity of the five clusters is ϵ = 0.27 ± 0.03, consistent with results from X-ray data. Additionally, we obtain model-independent estimates of Y_(500), the integrated SZ y-parameter over the cluster face to a radius of r_(500), with systematics-dominated uncertainties of ≃ 10%. Our Y_(500) values, which are free from the biases associated with model-derived Y_(500) values, scale with cluster mass in a way that is consistent with both self-similar predictions and expectations of a ≃ 10% intrinsic scatter

    Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells

    Get PDF
    The performance of lanthanum nickelate, La2NiO4+δ (LNO), as a cathode in IT-SOFCs with the electrolyte cerium gadolinium oxide, Ce0.9Gd0.1O2−δ (CGO), has been investigated by AC impedance spectroscopy of symmetrical cells. A significant reduction in the area specific resistance (ASR) has been achieved with a layered cathode structure consisting of a thin compact LNO layer between the dense electrolyte and porous electrode. This decrease in ASR is believed to be a result of contact at the electrolyte/cathode boundary enhancing the oxygen ion transfer to the electrolyte. An ASR of 1.0 Ω cm2 at 700 °C was measured in a symmetrical cell with this layered structure, compared to an ASR of 7.4 Ω cm2 in a cell without the compact layer. In addition, further improvements were observed by enhancing the cell current collection and it is anticipated that a symmetrical cell consisting of a layered structure with adequate current collection would lower these ASR values further

    EXAFS study of nickel tetracarbonyl and nickel clusters in zeolite Y

    Get PDF
    Adsorption and thermal decomposition of Ni(CO)4 in the cage system of zeolite Y have been studied with EXAFS, electron microscopy and IR spectroscopy , Ni(CO)4 is adsorbed as an intact molecule in both cation - free zeolite Y and NaY. Symmetry changes of the molecule in NaY are assigned to the formation of Na—OC-IMi bridges. Thermal treatment of the Ni(CO)4/NaY adduct leads to loss of CO concomitant with the formation of a binodal Ni phase. A major part of the forms clusters with diameter between 0.5 and about 1.5 nm, in addition to larger crystallites (5-30 nm), sticking at the outer surface of the zeolite matrix., The Ni-Ni scattering amplitude indicates increasing average particle size with increasing temperature

    Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance

    Get PDF
    Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste

    HerMES: a search for high-redshift dusty galaxies in the HerMES Large Mode Survey – catalogue, number counts and early results

    Get PDF
    Selecting sources with rising flux densities towards longer wavelengths from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) maps is an efficient way to produce a catalogue rich in high-redshift (z > 4) dusty star-forming galaxies. The effectiveness of this approach has already been confirmed by spectroscopic follow-up observations, but the previously available catalogues made this way are limited by small survey areas. Here we apply a map-based search method to 274 deg^2 of the Herschel Multi-tiered Extragalactic Survey (HerMES) Large Mode Survey and create a catalogue of 477 objects with SPIRE flux densities S_(500) > S_(350) > S_(250) and a 5σ cut-off S_(500) > 52 mJy. From this catalogue we determine that the total number of these ‘red’ sources is at least an order of magnitude higher than predicted by galaxy evolution models. These results are in agreement with previous findings in smaller HerMES fields; however, due to our significantly larger sample size we are also able to investigate the shape of the red source counts for the first time. We have obtained spectroscopic redshift measurements for two of our sources using the Atacama Large Millimeter/submillimeter Array. The redshifts z = 5.1 and 3.8 confirm that with our selection method we can indeed find high-redshift dusty star-forming galaxies

    Native Chemical Ligation−Photodesulfurization in Flow

    Get PDF
    Native chemical ligation (NCL) combined with desulfurization chemistry has revolutionized the way in which large polypeptides and proteins are accessed by chemical synthesis. Herein, we outline the use of flow chemistry for the ligation-based assembly of polypeptides. We also describe the development of a novel photodesulfurization transformation that, when coupled with flow NCL, enables efficient access to native polypeptides on time scales up to 2 orders of magnitude faster than current batch NCL–desulfurization methods. The power of the new ligation–photodesulfurization flow platform is showcased through the rapid synthesis of the 36 residue clinically approved HIV entry inhibitor enfuvirtide and the peptide diagnostic agent somatorelin.ARC Future Fellowship Scheme 25

    143 GHz brightness measurements of Uranus, Neptune, and other secondary calibrators with Bolocam between 2003 and 2010

    Get PDF
    Bolocam began collecting science data in 2003 as the long-wavelength imaging camera at the Caltech Submillimeter Observatory. The planets, along with a handful of secondary calibrators, have been used to determine the flux calibration for all of the data collected with Bolocam. Uranus and Neptune stand out as the only two planets that are bright enough to be seen with high signal-to-noise in short integrations without saturating the standard Bolocam readout electronics. By analyzing all of the 143 GHz observations made with Bolocam between 2003 and 2010, we find that the brightness ratio of Uranus to Neptune is 1.027 +- 0.006, with no evidence for any variations over that period. Including previously published results at \simeq 150 GHz, we find a brightness ratio of 1.029 +- 0.006 with no evidence for time variability over the period 1983-2010. Additionally, we find no evidence for time-variability in the brightness ratio of either Uranus or Neptune to the ultracompact HII region G34.3 or the protostellar source NGC 2071IR. Using recently published WMAP results we constrain the absolute 143 GHz brightness of both Uranus and Neptune to ~3%. Finally, we present ~3% absolute 143 GHz peak flux density values for the ultracompact HII regions G34.3 and K3-50A and the protostellar source NGC 2071IR.Comment: updated based on referee's comments, published in Ap

    A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

    Get PDF
    We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap

    Galaxy Cluster Scaling Relations between Bolocam Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements

    Get PDF
    We present scaling relations between the integrated Sunyaev-Zel'dovich Effect (SZE) signal, YSZY_{\rm SZ}, its X-ray analogue, YXMgasTXY_{\rm X}\equiv M_{\rm gas}T_{\rm X}, and total mass, MtotM_{\rm tot}, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within r2500r_{2500}. Y2500Y_{2500} values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, TXT_{\rm X}, and mass, Mgas,2500M_{\rm gas,2500}, of the intracluster medium are determined using X-ray data collected with Chandra, and MtotM_{\rm tot} is derived from MgasM_{\rm gas} assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the Y2500Y_{2500}--YXY_{\rm X} scaling to have a power-law index of 0.84±0.070.84\pm0.07, and a fractional intrinsic scatter in Y2500Y_{2500} of (21±7)%(21\pm7)\% at fixed YXY_{\rm X}, both of which are consistent with previous analyses. We also measure the scaling between Y2500Y_{2500} and M2500M_{2500}, finding a power-law index of 1.06±0.121.06\pm0.12 and a fractional intrinsic scatter in Y2500Y_{2500} at fixed mass of (25±9)%(25\pm9)\%. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5σ\sigma. Given the good agreement between the measured Y2500Y_{2500}--YXY_{\rm X} scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.Comment: 31 pages, 15 figures, accepted by ApJ 04/11/2015. This version is appreciably different from the original submission: it includes an entirely new appendix, extended discussion, and much of the material has been reorganize
    corecore