15,105 research outputs found

    Causal Quantum Theory and the Collapse Locality Loophole

    Full text link
    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no non-local correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise theory of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it obvious that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments -- the {\it collapse locality loophole} -- which exists because of the possible time lag between a particle entering a measuring device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≈0.1\approx 0.1 light seconds.Comment: Discussion expanded; typos corrected; references adde

    No Signalling and Quantum Key Distribution

    Full text link
    Standard quantum key distribution protocols are provably secure against eavesdropping attacks, if quantum theory is correct. It is theoretically interesting to know if we need to assume the validity of quantum theory to prove the security of quantum key distribution, or whether its security can be based on other physical principles. The question would also be of practical interest if quantum mechanics were ever to fail in some regime, because a scientifically and technologically advanced eavesdropper could perhaps use post-quantum physics to extract information from quantum communications without necessarily causing the quantum state disturbances on which existing security proofs rely. Here we describe a key distribution scheme provably secure against general attacks by a post-quantum eavesdropper who is limited only by the impossibility of superluminal signalling. The security of the scheme stems from violation of a Bell inequality.Comment: Clarifications and minor revisions in response to comments. Final version; to appear in Phys. Rev. Let

    Satellite remote sensing facility for oceanograhic applications

    Get PDF
    The project organization, design process, and construction of a Remote Sensing Facility at Scripps Institution of Oceanography at LaJolla, California are described. The facility is capable of receiving, processing, and displaying oceanographic data received from satellites. Data are primarily imaging data representing the multispectral ocean emissions and reflectances, and are accumulated during 8 to 10 minute satellite passes over the California coast. The most important feature of the facility is the reception and processing of satellite data in real time, allowing investigators to direct ships to areas of interest for on-site verifications and experiments

    Critical Currents of Josephson-Coupled Wire Arrays

    Full text link
    We calculate the current-voltage characteristics and critical current I_c^{array} of an array of Josephson-coupled superconducting wires. The array has two layers, each consisting of a set of parallel wires, arranged at right angles, such that an overdamped resistively-shunted junction forms wherever two wires cross. A uniform magnetic field equal to f flux quanta per plaquette is applied perpendicular to the layers. If f = p/q, where p and q are mutually prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small integer. To an excellent approximation, it is found in a square array of n^2 plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n. This result is interpreted in terms of the commensurability between the array and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure

    Three-dimensional images of choanoflagellate loricae

    Get PDF
    Choanoflagellates are unicellular filter-feeding protozoa distributed universally in aquatic habitats. Cells are ovoid in shape with a single anterior flagellum encircled by a funnel-shaped collar of microvilli. Movement of the flagellum creates water currents from which food particles are entrapped on the outer surface of the collar and ingested by pseudopodia. One group of marine choanoflagellates has evolved an elaborate basket-like exoskeleton, the lorica, comprising two layers of siliceous costae made up of costal strips. A computer graphic model has been developed for generating three-dimensional images of choanoflagellate loricae based on a universal set of 'rules' derived from electron microscopical observations. This model has proved seminal in understanding how complex costal patterns can be assembled in a single continuous movement. The lorica, which provides a rigid framework around the cell, is multifunctional. It resists the locomotory forces generated by flagellar movement, directs and enhances water flow over the collar and, for planktonic species, contributes towards maintaining cells in suspension. Since the functional morphology of choanoflagellate cells is so effective and has been highly conserved within the group, the ecological and evolutionary radiation of choanoflagellates is almost entirely dependent on the ability of the external coverings, particularly the lorica, to diversify

    Parkes-CDSCC telemetry array: Equipment design

    Get PDF
    A unique combination of Deep Space Network (DSN) and non-DSN facilities in Australia provided enhanced data return from the Voyager spacecraft as it encountered the planet Uranus. Many of the key elements are duplicated from Voyager's encounters with Jupiter and Saturn. Some are unique extensions of that technology

    Efficient quantum key distribution secure against no-signalling eavesdroppers

    Get PDF
    By carrying out measurements on entangled states, two parties can generate a secret key which is secure not only against an eavesdropper bound by the laws of quantum mechanics, but also against a hypothetical "post-quantum" eavesdroppers limited by the no-signalling principle only. We introduce a family of quantum key distribution protocols of this type, which are more efficient than previous ones, both in terms of key rate and noise resistance. Interestingly, the best protocols involve large number of measurements. We show that in the absence of noise, these protocols can yield one secret bit per entanglement bit, implying that the key rates in the no-signalling post-quantum scenario are comparable to the key rates in usual quantum key distribution.Comment: 11 pages, 2 color figures. v2: minor modifications, added references, added note on the relation to quant-ph/060604

    Pre- and Post-selection paradoxes and contextuality in quantum mechanics

    Get PDF
    Many seemingly paradoxical effects are known in the predictions for outcomes of intermediate measurements made on pre- and post-selected quantum systems. Despite appearances, these effects do not demonstrate the impossibility of a noncontextual hidden variable theory, since an explanation in terms of measurement-disturbance is possible. Nonetheless, we show that for every paradoxical effect wherein all the pre- and post- selected probabilities are 0 or 1 and the pre- and post-selected states are nonorthogonal, there is an associated proof of contextuality. This proof is obtained by considering all the measurements involved in the paradoxical effect -- the pre-selection, the post-selection, and the alternative possible intermediate measurements -- as alternative possible measurements at a single time.Comment: 5 pages, 1 figure. Submitted to Phys. Rev. Lett. v2.0 revised in the light of referee comments, results unchange

    Tomography of Collisionless Stellar Systems

    Full text link
    In this paper the concept of tomography of a collisionless stellar system of general shape is introduced, and a generalization of the Projected Virial Theorem is obtained. Applying the tomographic procedure we then derive a new family of virial equations which coincides with the already known ones for spherically symmetric systems. This result is obtained without any use of explicit expressions for the line-of-sight velocity dispersion, or spherical coordinate system.Comment: BAP-06-1994-016-OAB. 7 pages, postscript file. In press on Celestial Mechanic
    • …
    corecore