2,198 research outputs found

    Instanton Calculus of Lifshitz Tails

    Get PDF
    For noninteracting particles moving in a Gaussian random potential, there exists a disagreement in the literature on the asymptotic expression for the density of states in the tail of the band. We resolve this discrepancy. Further we illuminate the physical facet of instantons appearing in replica and supersymmetric derivations with another derivation employing a Lagrange multiplier field.Comment: 5 page

    Cooling of cryogenic electron bilayers via the Coulomb interaction

    Full text link
    Heat dissipation in current-carrying cryogenic nanostructures is problematic because the phonon density of states decreases strongly as energy decreases. We show that the Coulomb interaction can prove a valuable resource for carrier cooling via coupling to a nearby, cold electron reservoir. Specifically, we consider the geometry of an electron bilayer in a silicon-based heterostructure, and analyze the power transfer. We show that across a range of temperatures, separations, and sheet densities, the electron-electron interaction dominates the phonon heat-dissipation modes as the main cooling mechanism. Coulomb cooling is most effective at low densities, when phonon cooling is least effective in silicon, making it especially relevant for experiments attempting to perform coherent manipulations of single spins.Comment: 9 pages, 5 figure

    Ground-plane screening of Coulomb interactions in two-dimensional systems: How effectively can one two-dimensional system screen interactions in another?

    Full text link
    The use of a nearby metallic ground-plane to limit the range of the Coulomb interactions between carriers is a useful approach in studying the physics of two-dimensional (2D) systems. This approach has been used to study Wigner crystallization of electrons on the surface of liquid helium, and most recently, the insulating and metallic states of semiconductor-based two-dimensional systems. In this paper, we perform calculations of the screening effect of one 2D system on another and show that a 2D system is at least as effective as a metal in screening Coulomb interactions. We also show that the recent observation of the reduced effect of the ground-plane when the 2D system is in the metallic regime is due to intralayer screening.Comment: 14 pages, 7 figures Accepted in PR

    Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation

    Full text link
    We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al, K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial distribution functions, and also calculate the free-atom and metallic-atom form-factors, focusing on how bonding effects affect the interpretation of X-ray scattering experiments, especially experimental measurements of the ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure

    Fractional-Period Excitations in Continuum Periodic Systems

    Get PDF
    We investigate the generation of fractional-period states in continuum periodic systems. As an example, we consider a Bose-Einstein condensate confined in an optical-lattice potential. We show that when the potential is turned on non-adiabatically, the system explores a number of transient states whose periodicity is a fraction of that of the lattice. We illustrate the origin of fractional-period states analytically by treating them as resonant states of a parametrically forced Duffing oscillator and discuss their transient nature and potential observability.Comment: 10 pages, 6 figures (some with multiple parts); revised version: minor clarifications of a couple points, to appear in Physical Review

    d0 Perovskite-Semiconductor Electronic Structure

    Full text link
    We address the low-energy effective Hamiltonian of electron doped d0 perovskite semiconductors in cubic and tetragonal phases using the k*p method. The Hamiltonian depends on the spin-orbit interaction strength, on the temperature-dependent tetragonal distortion, and on a set of effective-mass parameters whose number is determined by the symmetry of the crystal. We explain how these parameters can be extracted from angle resolved photo-emission, Raman spectroscopy, and magneto-transport measurements and estimate their values in SrTiO3

    A systematically coarse-grained model for DNA, and its predictions for persistence length, stacking, twist, and chirality

    Full text link
    We introduce a coarse-grained model of DNA with bases modeled as rigid-body ellipsoids to capture their anisotropic stereochemistry. Interaction potentials are all physicochemical and generated from all-atom simulation/parameterization with minimal phenomenology. Persistence length, degree of stacking, and twist are studied by molecular dynamics simulation as functions of temperature, salt concentration, sequence, interaction potential strength, and local position along the chain, for both single- and double-stranded DNA where appropriate. The model of DNA shows several phase transitions and crossover regimes in addition to dehybridization, including unstacking, untwisting, and collapse which affect mechanical properties such as rigidity and persistence length. The model also exhibits chirality with a stable right-handed and metastable left-handed helix.Comment: 30 pages, 20 figures, Supplementary Material available at http://www.physics.ubc.ca/~steve/publications.htm
    corecore