52 research outputs found

    Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report

    Get PDF
    BACKGROUND: Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. CASE PRESENTATION: A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. CONCLUSION: Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately

    An in vitro collagen perfusion wound biofilm model; with applications for antimicrobial studies and microbial metabolomics

    Get PDF
    BackgroundThe majority of in vitro studies of medically relevant biofilms involve the development of biofilm on an inanimate solid surface. However, infection in vivo consists of biofilm growth on, or suspended within, the semi-solid matrix of the tissue, whereby current models do not effectively simulate the nature of the in vivo environment. This paper describes development of an in vitro method for culturing wound associated microorganisms in a system that combines a semi-solid collagen gel matrix with continuous flow of simulated wound fluid. This enables culture of wound associated reproducible steady state biofilms under conditions that more closely simulate the dynamic wound environment. To demonstrate the use of this model the antimicrobial kinetics of ceftazidime, against both mature and developing Pseudomonas aeruginosa biofilms, was assessed. In addition, we have shown the potential application of this model system for investigating microbial metabolomics by employing selected ion flow tube mass spectrometry (SIFT-MS) to monitor ammonia and hydrogen cyanide production by Pseudomonas aeruginosa biofilms in real-time. ResultsThe collagen wound biofilm model facilitates growth of steady-state reproducible Pseudomonas aeruginosa biofilms under wound like conditions. A maximum biofilm density of 1010 cfu slide-1 was achieved by 30 hours of continuous culture and maintained throughout the remainder of the experiment. Treatment with ceftazidime at a clinically relevant dose resulted in a 1.2 – 1.6 log reduction in biofilm density at 72 hours compared to untreated controls. Treatment resulted in loss of complex biofilm architecture and morphological changes to bacterial cells, visualised using confocal microscopy. When monitoring the biofilms using SIFT-MS, ammonia and hydrogen cyanide levels peaked at 12 hours at 2273 ppb (±826.4) and 138 ppb (±49.1) respectively and were detectable throughout experimentation. ConclusionsThe collagen wound biofilm model has been developed to facilitate growth of reproducible biofilms under wound-like conditions. We have successfully used this method to: (1) evaluate antimicrobial efficacy and kinetics, clearly demonstrating the development of antimicrobial tolerance in biofilm cultures; (2) characterise volatile metabolite production by P. aeruginosa biofilms, demonstrating the potential use of this method in metabolomics studies

    Inclusion of MUC1 (Ma695) in a panel of immunohistochemical markers is useful for distinguishing between endocervical and endometrial mucinous adenocarcinoma*

    Get PDF
    BACKGROUND: Distinguishing endocervical adenocarcinoma (ECA) from endometrial mucinous adenocarcinoma (EMMA) is clinically significant in view of the differences in their management and prognosis. In this study, we used a panel of tumor markers to determine their ability to distinguish between primary endocervical adenocarcinoma and primary endometrial mucinous adenocarcinoma. METHODS: Immunohistochemistry using monoclonal antibodies to MUC1 (Ma695), p16, estrogen receptor (ER), progesterone receptor (PR), and vimentin, was performed to examine 32 cases, including 18 EMMAs and 14 ECAs. For MUC1, cases were scored based on the percentage of staining pattern, apical, apical and cytoplasmic (A/C), or negative. For p16, cases were scored based on the percentage of cells stained. For the rest of the antibodies, semiquantitative scoring system was carried out. RESULTS: For MUC1, majority of EMMA (14 of 18 cases, 78%) showed A/C staining, whereas only few ECA (2 of 14, 14%) were positive. The difference of MUC1 expression in the two groups of malignancy was statistically significant (p < 0.001). Staining for p16 was positive in 10 of 14 (71%) ECA and 4 of 18 (22%) EMMA. Estrogen receptor was positive in 3 of 14 (21%) ECA and 17 of 18 (94%) EMMA. Progesterone receptor was positive in 3 of 14 (21%) ECA and 16 of 18 (89%) EMMA. Vimentin was positive in 1 of 14 (7%) ECA, and 9 of 18 (50%) EMA, with median and range of 0 (0–6), and 1.5 (0–9) respectively. CONCLUSION: A panel of immunohistochemical markers including MUC1, p16, ER, PR, and vimentin is recommended, when there is morphological and clinical doubt as to the primary site of endocervical or endometrial origin

    Detection and Characterization of Oncogene Mutations in Preneoplastic and Early Neoplastic Lesions

    Get PDF
    While it has been nearly 30 years since its discovery, the ras family of genes has not yet lost its impact on basic and clinical oncology. These genes remain central to the field of molecular oncology as tools for investigating carcinogenesis and oncogenic signaling, as powerful biomarkers for the identification of those who have or are at high risk of developing cancer, and as oncogene targets for the design and development of new chemotherapeutic drugs. Mutational activation of the K-RAS proto-oncogene is an early event in the development and progression of the colorectal, pancreatic, and lung cancers that are the major causes of cancer death in the world. The presence of point mutational "hot spots" at sites necessary for the activation of this proto-oncogene has led to the development of a number of highly sensitive PCR-based methods that are feasible for the early detection of K-RAS oncogene mutations in the clinical setting. In light of these facts, mutation at the K-RAS oncogene has the potential to serve as a useful biomarker in the early diagnosis and risk assessment of cancers with oncogenic ras signaling. This chapter describes a highly sensitive method for detecting mutant K-RAS, enriched PCR, and its application to early detection of alterations in this oncogene in preneoplastic and early neoplastic lesions of the colon and rectum
    • …
    corecore