11,771 research outputs found

    Phenomenological Analysis of pppp and pˉp\bar{p}p Elastic Scattering Data in the Impact Parameter Space

    Full text link
    We use an almost model-independent analytical parameterization for pppp and pˉp\bar{p}p elastic scattering data to analyze the eikonal, profile, and inelastic overlap functions in the impact parameter space. Error propagation in the fit parameters allows estimations of uncertainty regions, improving the geometrical description of the hadron-hadron interaction. Several predictions are shown and, in particular, the prediction for pppp inelastic overlap function at s=14\sqrt{s}=14 TeV shows the saturation of the Froissart-Martin bound at LHC energies.Comment: 15 pages, 16 figure

    Temperature dependence of the spin and orbital magnetization density in Sm1xGdxAl2Sm_{1-x}Gd_{x} Al_{2} around the spin-orbital compensation point

    Full text link
    Non-resonant ferromagnetic x-ray diffraction has been used to separate the spin and orbital contribution to the magnetization density of the proposed zero-moment ferromagnet Sm0.982Gd0.018Al2Sm_{0.982}Gd_{0.018} Al_{2}. The alignment of the spin and orbital moments relative to the net magnetization shows a sign reversal at 84K, the compensation temperature. Below this temperature the orbital moment is larger than the spin moment, and vice versa above it. This result implies that the compensation mechanism is driven by the different temperature dependencies of the 4f4f spin and orbital moments. Specific heat data indicate that the system remains ferromagnetically ordered throughout

    Destruction of chain-superconductivity in YBa_2Cu_4O_8 in a weak magnetic field

    Full text link
    We report measurements of the temperature dependent components of the magnetic penetration depth {\lambda}(T) in single crystal samples of YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We observe a downturn in {\lambda}(T) at low temperatures for currents flowing along the b and c axes but not along the a axis. The downturn in {\lambda}_b is suppressed by a small dc field of ~0.25 T. This and the zero field anisotropy of {\lambda}(T) likely result from proximity induced superconducting on the CuO chains, however we also discuss the possibility that a significant part of the anisotropy might originate from the CuO2 planes.Comment: 5 page

    Linear-response theory of the longitudinal spin Seebeck effect

    Full text link
    We theoretically investigate the longitudinal spin Seebeck effect, in which the spin current is injected from a ferromagnet into an attached nonmagnetic metal in a direction parallel to the temperature gradient. Using the fact that the phonon heat current flows intensely into the attached nonmagnetic metal in this particular configuration, we show that the sign of the spin injection signal in the longitudinal spin Seebeck effect can be opposite to that in the conventional transverse spin Seebeck effect when the electron-phonon interaction in the nonmagnetic metal is sufficiently large. Our linear-response approach can explain the sign reversal of the spin injection signal recently observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.), typos correcte

    Giant Stark effect in the emission of single semiconductor quantum dots

    Full text link
    We study the quantum-confined Stark effect in single InAs/GaAs quantum dots embedded within a AlGaAs/GaAs/AlGaAs quantum well. By significantly increasing the barrier height we can observe emission from a dot at electric fields of -500 kV/cm, leading to Stark shifts of up to 25 meV. Our results suggest this technique may enable future applications that require self-assembled dots with transitions at the same energy

    Superconducting Volume Fraction in Overdoped Regime of La_2-x_Sr_x_CuO_4_: Implication for Phase Separation from Magnetic-Susceptibility Measurement

    Full text link
    We have grown a single crystal of La_2-x_Sr_x_CuO_4_ in which the Sr concentration, x, continuously changes from 0.24 to 0.29 in the overdoped regime and obtained many pieces of single crystals with different x values by slicing the single crystal. From detailed measurements of the magnetic susceptibility, chi, of each piece, it has been found that the absolute value of chi at the measured lowest temperature 2 K, |chi_2K_|, on field cooling rapidly decreases with increasing x as well as the superconducting (SC) transition temperature. As the value of |chi_2K_| is regarded as corresponding to the SC volume fraction in a sample, it has been concluded that a phase separation into SC and normal-state regions occurs in a sample of La_2-x_Sr_x_CuO_4_ in the overdoped regime.Comment: 4 pages, 3 figures, ver. 2 has been accepted in J. Phys. Soc. Jp

    Curie-like paramagnetism due to incomplete Zhang-Rice singlet formation in La2-xSrxCuO4

    Full text link
    In an effort to elucidate the origin of the Curie-like paramagnetism that is generic for heavily-overdoped cuprates, we have performed high transverse-field muon spin rotation (TF-muSR) measurements of La2-xSrxCuO4 single crystals over the Sr content range 0.145 < x < 0.33. We show that the x-dependence of the previously observed field-induced broadening of the internal magnetic field distribution above the superconducting transition temperature Tc reflects the presence of two distinct contributions. One of these becomes less pronounced with increasing x and is attributed to diminishing antiferromagnetic correlations. The other grows with increasing x, but decreases above x ~ 0.30, and is associated with the Curie-like term in the bulk magnetic susceptibility. In contrast to the Curie-like term, however, this second contribution to the TF-muSR line width extends back into the underdoped regime. Our findings imply a coexistence of antiferromagnetically correlated and paramagnetic moments, with the latter becoming dominant beyond x ~ 0.185. This suggests that the doped holes do not neutralize all Cu spins via the formation of Zhang-Rice singlets. Moreover, the paramagnetic component of the TF-muSR line width is explained by holes progressively entering the Cu 3d_{x^2-y^2} orbital with doping.Comment: 8 pages, 7 figure

    Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires

    Full text link
    Recent studies have shown that material structures, which lack structural inversion symmetry and have high spin-orbit coupling can exhibit chiral magnetic textures and skyrmions which could be a key component for next generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes skyrmions is an anti-symmetric exchange interaction favoring non-collinear orientation of neighboring spins. It has been shown that material systems with high DMI can lead to very efficient domain wall and skyrmion motion by spin-orbit torques. To engineer such devices, it is important to quantify the DMI for a given material system. Here we extract the DMI at the Heavy Metal (HM) /Ferromagnet (FM) interface using two complementary measurement schemes namely asymmetric domain wall motion and the magnetic stripe annihilation. By using the two different measurement schemes, we find for W(5 nm)/Co20Fe60B20(0.6 nm)/MgO(2 nm) the DMI to be 0.68 +/- 0.05 mJ/m2 and 0.73 +/- 0.5 mJ/m2, respectively. Furthermore, we show that this DMI stabilizes skyrmions at room temperature and that there is a strong dependence of the DMI on the relative composition of the CoFeB alloy. Finally we optimize the layers and the interfaces using different growth conditions and demonstrate that a higher deposition rate leads to a more uniform film with reduced pinning and skyrmions that can be manipulated by Spin-Orbit Torques

    Critical Collapse of an Ultrarelativistic Fluid in the Γ1\Gamma\to 1 Limit

    Full text link
    In this paper we investigate the critical collapse of an ultrarelativistic perfect fluid with the equation of state P=(Γ1)ρP=(\Gamma-1)\rho in the limit of Γ1\Gamma\to 1. We calculate the limiting continuously self similar (CSS) solution and the limiting scaling exponent by exploiting self-similarity of the solution. We also solve the complete set of equations governing the gravitational collapse numerically for (Γ1)=102,...,106(\Gamma-1) = 10^{-2},...,10^{-6} and compare them with the CSS solutions. We also investigate the supercritical regime and discuss the hypothesis of naked singularity formation in a generic gravitational collapse. The numerical calculations make use of advanced methods such as high resolution shock capturing evolution scheme for the matter evolution, adaptive mesh refinement, and quadruple precision arithmetic. The treatment of vacuum is also non standard. We were able to tune the critical parameter up to 30 significant digits and to calculate the scaling exponents accurately. The numerical results agree very well with those calculated using the CSS ansatz. The analysis of the collapse in the supercritical regime supports the hypothesis of the existence of naked singularities formed during a generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of investigation of a supercritical collapse and the existence of naked singularities in generic gravitational collaps
    corecore