11,771 research outputs found
Phenomenological Analysis of and Elastic Scattering Data in the Impact Parameter Space
We use an almost model-independent analytical parameterization for and
elastic scattering data to analyze the eikonal, profile, and
inelastic overlap functions in the impact parameter space. Error propagation in
the fit parameters allows estimations of uncertainty regions, improving the
geometrical description of the hadron-hadron interaction. Several predictions
are shown and, in particular, the prediction for inelastic overlap
function at TeV shows the saturation of the Froissart-Martin
bound at LHC energies.Comment: 15 pages, 16 figure
Temperature dependence of the spin and orbital magnetization density in around the spin-orbital compensation point
Non-resonant ferromagnetic x-ray diffraction has been used to separate the
spin and orbital contribution to the magnetization density of the proposed
zero-moment ferromagnet . The alignment of the
spin and orbital moments relative to the net magnetization shows a sign
reversal at 84K, the compensation temperature. Below this temperature the
orbital moment is larger than the spin moment, and vice versa above it. This
result implies that the compensation mechanism is driven by the different
temperature dependencies of the spin and orbital moments. Specific heat
data indicate that the system remains ferromagnetically ordered throughout
Destruction of chain-superconductivity in YBa_2Cu_4O_8 in a weak magnetic field
We report measurements of the temperature dependent components of the
magnetic penetration depth {\lambda}(T) in single crystal samples of
YBa_2Cu_4O_8 using a radio frequency tunnel diode oscillator technique. We
observe a downturn in {\lambda}(T) at low temperatures for currents flowing
along the b and c axes but not along the a axis. The downturn in {\lambda}_b is
suppressed by a small dc field of ~0.25 T. This and the zero field anisotropy
of {\lambda}(T) likely result from proximity induced superconducting on the CuO
chains, however we also discuss the possibility that a significant part of the
anisotropy might originate from the CuO2 planes.Comment: 5 page
Linear-response theory of the longitudinal spin Seebeck effect
We theoretically investigate the longitudinal spin Seebeck effect, in which
the spin current is injected from a ferromagnet into an attached nonmagnetic
metal in a direction parallel to the temperature gradient. Using the fact that
the phonon heat current flows intensely into the attached nonmagnetic metal in
this particular configuration, we show that the sign of the spin injection
signal in the longitudinal spin Seebeck effect can be opposite to that in the
conventional transverse spin Seebeck effect when the electron-phonon
interaction in the nonmagnetic metal is sufficiently large. Our linear-response
approach can explain the sign reversal of the spin injection signal recently
observed in the longitudinal spin Seebeck effect.Comment: Proc. of ICM 2012 (Accepted for publication in J. Korean Phys. Soc.),
typos correcte
Giant Stark effect in the emission of single semiconductor quantum dots
We study the quantum-confined Stark effect in single InAs/GaAs quantum dots
embedded within a AlGaAs/GaAs/AlGaAs quantum well. By significantly increasing
the barrier height we can observe emission from a dot at electric fields of
-500 kV/cm, leading to Stark shifts of up to 25 meV. Our results suggest this
technique may enable future applications that require self-assembled dots with
transitions at the same energy
Superconducting Volume Fraction in Overdoped Regime of La_2-x_Sr_x_CuO_4_: Implication for Phase Separation from Magnetic-Susceptibility Measurement
We have grown a single crystal of La_2-x_Sr_x_CuO_4_ in which the Sr
concentration, x, continuously changes from 0.24 to 0.29 in the overdoped
regime and obtained many pieces of single crystals with different x values by
slicing the single crystal. From detailed measurements of the magnetic
susceptibility, chi, of each piece, it has been found that the absolute value
of chi at the measured lowest temperature 2 K, |chi_2K_|, on field cooling
rapidly decreases with increasing x as well as the superconducting (SC)
transition temperature. As the value of |chi_2K_| is regarded as corresponding
to the SC volume fraction in a sample, it has been concluded that a phase
separation into SC and normal-state regions occurs in a sample of
La_2-x_Sr_x_CuO_4_ in the overdoped regime.Comment: 4 pages, 3 figures, ver. 2 has been accepted in J. Phys. Soc. Jp
Curie-like paramagnetism due to incomplete Zhang-Rice singlet formation in La2-xSrxCuO4
In an effort to elucidate the origin of the Curie-like paramagnetism that is
generic for heavily-overdoped cuprates, we have performed high transverse-field
muon spin rotation (TF-muSR) measurements of La2-xSrxCuO4 single crystals over
the Sr content range 0.145 < x < 0.33. We show that the x-dependence of the
previously observed field-induced broadening of the internal magnetic field
distribution above the superconducting transition temperature Tc reflects the
presence of two distinct contributions. One of these becomes less pronounced
with increasing x and is attributed to diminishing antiferromagnetic
correlations. The other grows with increasing x, but decreases above x ~ 0.30,
and is associated with the Curie-like term in the bulk magnetic susceptibility.
In contrast to the Curie-like term, however, this second contribution to the
TF-muSR line width extends back into the underdoped regime. Our findings imply
a coexistence of antiferromagnetically correlated and paramagnetic moments,
with the latter becoming dominant beyond x ~ 0.185. This suggests that the
doped holes do not neutralize all Cu spins via the formation of Zhang-Rice
singlets. Moreover, the paramagnetic component of the TF-muSR line width is
explained by holes progressively entering the Cu 3d_{x^2-y^2} orbital with
doping.Comment: 8 pages, 7 figure
Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires
Recent studies have shown that material structures, which lack structural
inversion symmetry and have high spin-orbit coupling can exhibit chiral
magnetic textures and skyrmions which could be a key component for next
generation storage devices. The Dzyaloshinskii-Moriya Interaction (DMI) that
stabilizes skyrmions is an anti-symmetric exchange interaction favoring
non-collinear orientation of neighboring spins. It has been shown that material
systems with high DMI can lead to very efficient domain wall and skyrmion
motion by spin-orbit torques. To engineer such devices, it is important to
quantify the DMI for a given material system. Here we extract the DMI at the
Heavy Metal (HM) /Ferromagnet (FM) interface using two complementary
measurement schemes namely asymmetric domain wall motion and the magnetic
stripe annihilation. By using the two different measurement schemes, we find
for W(5 nm)/Co20Fe60B20(0.6 nm)/MgO(2 nm) the DMI to be 0.68 +/- 0.05 mJ/m2 and
0.73 +/- 0.5 mJ/m2, respectively. Furthermore, we show that this DMI stabilizes
skyrmions at room temperature and that there is a strong dependence of the DMI
on the relative composition of the CoFeB alloy. Finally we optimize the layers
and the interfaces using different growth conditions and demonstrate that a
higher deposition rate leads to a more uniform film with reduced pinning and
skyrmions that can be manipulated by Spin-Orbit Torques
Critical Collapse of an Ultrarelativistic Fluid in the Limit
In this paper we investigate the critical collapse of an ultrarelativistic
perfect fluid with the equation of state in the limit of
. We calculate the limiting continuously self similar (CSS)
solution and the limiting scaling exponent by exploiting self-similarity of the
solution. We also solve the complete set of equations governing the
gravitational collapse numerically for and
compare them with the CSS solutions. We also investigate the supercritical
regime and discuss the hypothesis of naked singularity formation in a generic
gravitational collapse. The numerical calculations make use of advanced methods
such as high resolution shock capturing evolution scheme for the matter
evolution, adaptive mesh refinement, and quadruple precision arithmetic. The
treatment of vacuum is also non standard. We were able to tune the critical
parameter up to 30 significant digits and to calculate the scaling exponents
accurately. The numerical results agree very well with those calculated using
the CSS ansatz. The analysis of the collapse in the supercritical regime
supports the hypothesis of the existence of naked singularities formed during a
generic gravitational collapse.Comment: 23 pages, 16 figures, revised version, added new results of
investigation of a supercritical collapse and the existence of naked
singularities in generic gravitational collaps
- …