2,785 research outputs found

    Contextual-based Image Inpainting: Infer, Match, and Translate

    Full text link
    We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into inference and translation as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide the propagation of local textures from the boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions in much smaller space and hence easier to train. We evaluate our method on several public datasets and show that we generate results of better visual quality than previous state-of-the-art methods.Comment: ECCV 2018 camera read

    Comment on "Valence QCD: Connecting QCD to the Quark Model"

    Get PDF
    I criticize certain conclusions about the physics of hadrons drawn from a "valence QCD" approximation to QCD.Comment: 12 pages, 8 figures; some minor improvements made to the tex

    Far-infrared optical conductivity of CeCu2Si2

    Full text link
    Journal ref.: J. Phys.: Condens. Matter 25, 065602 (2013): We investigated the optical reflectivity of the heavy-fermion metal CeCu2Si2 in the energy range 3 meV - 30 eV for temperatures between 4K - 300K. The results for the charge dynamics indicate a behavior that is expected for the formation of a coherent heavy quasiparticle state: Upon cooling the spectra of the optical conductivity indicate a narrowing of the coherent response. Below temperatures of 30 K a considerable suppression of conductivity evolves below a peak structure at 13 meV. We assign this gap-like feature to strong electron correlations due to the 4f-conduction electron hybridization.Comment: 7 pages, 3 figure

    Is the anomalous decay ratio of D_{sJ}(2632) due to isospin breaking?

    Full text link
    Quark pair annihilation into gluons is suppressed at large momenta due to the asymptotic freedom. As a consequence, mass eigenvalues of heavy states should be almost diagonal with respect to up and down quark masses, thereby breaking isospin. We suggest the particle observed by the SELEX Collaboration, D_{sJ}(2632) to be to a good extent a [cd][dbar sbar] state, which would explain why its D^0 K^+ mode is anomalously suppressed with respect to D_s eta. Predictions for the rates of the yet unobserved modes D_s pi^0 and D^+ K^0 are given.Comment: 3 pages, 1 figur

    Production of f0(1710)f_0(1710), f0(1500)f_0(1500), and f0(1370)f_0(1370) in J/ψJ/\psi hadronic decays

    Full text link
    A coherent study of the production of f0if_0^i (i=1i=1, 2, 3 corresponding to f0(1710)f_0(1710), f0(1500)f_0(1500), and f0(1370)f_0(1370)) in J/ψ→Vf0→VPPJ/\psi\to V f_0 \to V PP is reported based on a previously proposed glueball and QQˉQ\bar{Q} nonet mixing scheme, and a factorization for the decay of J/ψ→Vf0iJ/\psi\to V f_0^i, where VV denotes the isoscalar vector mesons ϕ\phi and ω\omega, and PP denotes pseudoscalar mesons. The results show that the J/ψJ/\psi decays are very sensitive to the structure of those scalar mesons, and suggest a glueball in the 1.5−1.71.5-1.7 GeV region, in line with Lattice QCD. The presence of significant glueball mixings in the scalar wavefunctions produces peculiar patterns in the branching ratios for J/ψ→Vf0i→VPPJ/\psi\to V f_0^i\to VPP, which are in good agreement with the recently published experimental data from the BES collaboration.Comment: Version accepted by PRD; Numerical results in Tab IV and VI changed due to correction of an error in quoting an experimental datum; Conclusion is not change

    Temperature- and Magnetic-Field-Dependent Optical Properties of Heavy Quasiparticles in YbIr2Si2

    Full text link
    We report the temperature- and magnetic-field-dependent optical conductivity spectra of the heavy electron metal YbIr2_2Si2_2. Upon cooling below the Kondo temperature (TKT_{\rm K}), we observed a typical charge dynamics that is expected for a formation of a coherent heavy quasiparticle state. We obtained a good fitting of the Drude weight of the heavy quasiparticles by applying a modified Drude formula with a photon energy dependence of the quasiparticle scattering rate that shows a similar power-law behavior as the temperature dependence of the electrical resistivity. By applying a magnetic field of 6T below TKT_{\rm K}, we found a weakening of the effective dynamical mass enhancement by about 12% in agreement with the expected decrease of the 4f4f-conduction electron hybridization on magnetic field.Comment: 5 pages, 4 figures. to be published in Journal of the Physical Society of Japan Vol. 79 (2010) No. 1

    A new look at scalar mesons

    Full text link
    Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulae which respect, to a good extent, the OZI rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qbar-q pair, which transforms the state into two colourless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.Comment: 4 pages, 1 figure, misprints corrected, references added, accepted for publication in Phys. Rev. Let

    Unsupervised Diverse Colorization via Generative Adversarial Networks

    Full text link
    Colorization of grayscale images has been a hot topic in computer vision. Previous research mainly focuses on producing a colored image to match the original one. However, since many colors share the same gray value, an input grayscale image could be diversely colored while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse colorization. Specifically, we leverage conditional generative adversarial networks to model the distribution of real-world item colors, in which we develop a fully convolutional generator with multi-layer noise to enhance diversity, with multi-layer condition concatenation to maintain reality, and with stride 1 to keep spatial information. With such a novel network architecture, the model yields highly competitive performance on the open LSUN bedroom dataset. The Turing test of 80 humans further indicates our generated color schemes are highly convincible
    • 

    corecore