787 research outputs found

    Ab-initio study of the bandgap engineering of Al(1-x)Ga(x)N for optoelectronic applications

    Full text link
    A theoretical study of Al(1-x)Ga(x)N, based on full-potential linearized augmented plane wave method, is used to investigate the variations in the bandgap, optical properties and non-linear behavior of the compound with the variation of Ga concentration. It is found that the bandgap decreases with the increase of Ga in Al(1-x)Ga(x)N. A maximum value of 5.5 eV is determined for the bandgap of pure AlN which reaches to minimum value of 3.0 eV when Al is completely replaced by Ga. The static index of refraction and dielectric constant decreases with the increase in bandgap of the material, assigning a high index of refraction to pure GaN when compared to pure AlN. The refractive index drops below 1 for photon energies larger than 14 eV results group velocity of the incident radiation higher than the vacuum velocity of light. This astonishing result shows that at higher energies the optical properties of the material shifts from linear to non-linear. Furthermore, frequency dependent reflectivity and absorption coefficients show that peak value of the absorption coefficient and reflectivity shifts towards lower energy in the UV spectrum with the increase in Ga concentration. This comprehensive theoretical study of the optoelectronic properties of the alloys is presented for the first time which predicts that the material can be effectively used in the optical devices working in the visible and UV spectrum.Comment: 18 pages, 7 figure

    The Development Of Technical Education In Pakistan

    Get PDF
    The main objectives of this study were to highlight the present profile of technical education in NWFP, Pakistan, to pinpoint the physical facilities problems of technical education, to highlight the academic problems in technical education, and to recommend strategies for the improvement of technical education in Pakistan

    A reinforcement learning recommender system using bi-clustering and Markov Decision Process

    Get PDF
    Collaborative filtering (CF) recommender systems are static in nature and does not adapt well with changing user preferences. User preferences may change after interaction with a system or after buying a product. Conventional CF clustering algorithms only identifies the distribution of patterns and hidden correlations globally. However, the impossibility of discovering local patterns by these algorithms, headed to the popularization of bi-clustering algorithms. Bi-clustering algorithms can analyze all dataset dimensions simultaneously and consequently, discover local patterns that deliver a better understanding of the underlying hidden correlations. In this paper, we modelled the recommendation problem as a sequential decision-making problem using Markov Decision Processes (MDP). To perform state representation for MDP, we first converted user-item votings matrix to a binary matrix. Then we performed bi-clustering on this binary matrix to determine a subset of similar rows and columns. A bi-cluster merging algorithm is designed to merge similar and overlapping bi-clusters. These bi-clusters are then mapped to a squared grid (SG). RL is applied on this SG to determine best policy to give recommendation to users. Start state is determined using Improved Triangle Similarity (ITR similarity measure. Reward function is computed as grid state overlapping in terms of users and items in current and prospective next state. A thorough comparative analysis was conducted, encompassing a diverse array of methodologies, including RL-based, pure Collaborative Filtering (CF), and clustering methods. The results demonstrate that our proposed method outperforms its competitors in terms of precision, recall, and optimal policy learning
    • …
    corecore