794 research outputs found

    Conservative-variable average states for equilibrium gas multi-dimensional fluxes

    Get PDF
    Modern split component evaluations of the flux vector Jacobians are thoroughly analyzed for equilibrium-gas average-state determinations. It is shown that all such derivations satisfy a fundamental eigenvalue consistency theorem. A conservative-variable average state is then developed for arbitrary equilibrium-gas equations of state and curvilinear-coordinate fluxes. Original expressions for eigenvalues, sound speed, Mach number, and eigenvectors are then determined for a general average Jacobian, and it is shown that the average eigenvalues, Mach number, and eigenvectors may not coincide with their classical pointwise counterparts. A general equilibrium-gas equation of state is then discussed for conservative-variable computational fluid dynamics (CFD) Euler formulations. The associated derivations lead to unique compatibility relations that constrain the pressure Jacobian derivatives. Thereafter, alternative forms for the pressure variation and average sound speed are developed in terms of two average pressure Jacobian derivatives. Significantly, no additional degree of freedom exists in the determination of these two average partial derivatives of pressure. Therefore, they are simultaneously computed exactly without any auxiliary relation, hence without any geometric solution projection or arbitrary scale factors. Several alternative formulations are then compared and key differences highlighted with emphasis on the determination of the pressure variation and average sound speed. The relevant underlying assumptions are identified, including some subtle approximations that are inherently employed in published average-state procedures. Finally, a representative test case is discussed for which an intrinsically exact average state is determined. This exact state is then compared with the predictions of recent methods, and their inherent approximations are appropriately quantified

    Maximum Likelihood Estimation in Data-Driven Modeling and Control

    Full text link
    Recently, various algorithms for data-driven simulation and control have been proposed based on the Willems' fundamental lemma. However, when collected data are noisy, these methods lead to ill-conditioned data-driven model structures. In this work, we present a maximum likelihood framework to obtain an optimal data-driven model, the signal matrix model, in the presence of output noise. Data compression and noise level estimation schemes are also proposed to apply the algorithm efficiently to large datasets and unknown noise level scenarios. Two approaches in system identification and receding horizon control are developed based on the derived optimal estimator. The first one identifies a finite impulse response model. This approach improves the least-squares estimator with less restrictive assumptions. The second one applies the signal matrix model as the predictor in predictive control. The control performance is shown to be better than existing data-driven predictive control algorithms, especially under high noise levels. Both approaches demonstrate that the derived estimator provides a promising framework to apply data-driven algorithms to noisy data

    Scalable tube model predictive control of uncertain linear systems using ellipsoidal sets

    Full text link
    This work proposes a novel robust model predictive control (MPC) algorithm for linear systems affected by dynamic model uncertainty and exogenous disturbances. The uncertainty is modeled using a linear fractional perturbation structure with a time-varying perturbation matrix, enabling the algorithm to be applied to a large model class. The MPC controller constructs a state tube as a sequence of parameterized ellipsoidal sets to bound the state trajectories of the system. The proposed approach results in a semidefinite program to be solved online, whose size scales linearly with the order of the system. The design of the state tube is formulated as an offline optimization problem, which offers flexibility to impose desirable features such as robust invariance on the terminal set. This contrasts with most existing tube MPC strategies using polytopic sets in the state tube, which are difficult to design and whose complexity grows combinatorially with the system order. The algorithm guarantees constraint satisfaction, recursive feasibility, and stability of the closed loop. The advantages of the algorithm are demonstrated using two simulation studies.Comment: Submitted to International Journal of Robust and Nonlinear Contro

    Stochastic Data-Driven Predictive Control: Regularization, Estimation, and Constraint Tightening

    Full text link
    Data-driven predictive control methods based on the Willems' fundamental lemma have shown great success in recent years. These approaches use receding horizon predictive control with nonparametric data-driven predictors instead of model-based predictors. This study addresses three problems of applying such algorithms under unbounded stochastic uncertainties: 1) tuning-free regularizer design, 2) initial condition estimation, and 3) reliable constraint satisfaction, by using stochastic prediction error quantification. The regularizer is designed by leveraging the expected output cost. An initial condition estimator is proposed by filtering the measurements with the one-step-ahead stochastic data-driven prediction. A novel constraint-tightening method, using second-order cone constraints, is presented to ensure high-probability chance constraint satisfaction. Numerical results demonstrate that the proposed methods lead to satisfactory control performance in terms of both control cost and constraint satisfaction, with significantly improved initial condition estimation

    Computationally efficient robust MPC using optimized constraint tightening

    Full text link
    A robust model predictive control (MPC) method is presented for linear, time-invariant systems affected by bounded additive disturbances. The main contribution is the offline design of a disturbance-affine feedback gain whereby the resulting constraint tightening is minimized. This is achieved by formulating the constraint tightening problem as a convex optimization problem with the feedback term as a variable. The resulting MPC controller has the computational complexity of nominal MPC, and guarantees recursive feasibility, stability and constraint satisfaction. The advantages of the proposed approach compared to existing robust MPC methods are demonstrated using numerical examples.Comment: Submitted to the 61st IEEE Conference on Decision and Control 202

    A Dual System-Level Parameterization for Identification from Closed-Loop Data

    Full text link
    This work presents a dual system-level parameterization (D-SLP) method for closed-loop system identification. The recent system-level synthesis framework parameterizes all stabilizing controllers via linear constraints on closed-loop response functions, known as system-level parameters. It was demonstrated that several structural, locality, and communication constraints on the controller can be posed as convex constraints on these system-level parameters. In the current work, the identification problem is treated as a {\em dual} of the system-level synthesis problem. The plant model is identified from the dual system-level parameters associated to the plant. In comparison to existing closed-loop identification approaches (such as the dual-Youla parameterization), the D-SLP framework neither requires the knowledge of a nominal plant that is stabilized by the known controller, nor depends upon the choice of factorization of the nominal plant and the stabilizing controller. Numerical simulations demonstrate the efficacy of the proposed D-SLP method in terms of identification errors, compared to existing closed-loop identification techniques
    corecore