17 research outputs found

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Microwave-induced spin-flip scattering of electrons in point contacts

    Get PDF
    We investigate resonant interaction of conduction electrons with an electromagnetic field that irradiates a point contact between a ferromagnetic and a normal metal in the presence of a strong magnetic field of order 1 T. We show that electron spin-flips caused by resonant absorption and stimulated emission of photons result in a sharp peak in the magnetic-field dependence of the point-contact resistance. The height of the peak is shown to be directly proportional to the net rate of energy transfer to the electromagnetic field in the point contact due to absorption and stimulated emission of photons. Estimations indicate that our theory can serve as a basis for the explanation of recent experiments [A.M. Kadigrobov et al., New J. Phys. 13, 023007 (2011)]
    corecore