11 research outputs found

    Quasiparticle states of the Hubbard model near the Fermi level

    Full text link
    The spectra of the t-U and t-t'-U Hubbard models are investigated in the one-loop approximation for different values of the electron filling. It is shown that the four-band structure which is inherent in the case of half-filling and low temperatures persists also for some excess or deficiency of electrons. Besides, with some departure from half-filling an additional narrow band of quasiparticle states arises near the Fermi level. The dispersion of the band, its bandwidth and the variation with filling are close to those of the spin-polaron band of the t-J model. For moderate doping spectral intensities in the new band and in one of the inner bands of the four-band structure decrease as the Fermi level is approached which leads to the appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure

    Interaction of strongly correlated electrons and acoustical phonons

    Get PDF
    We investigate the interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model in which both, the electron-phonon interaction and the on-site Coulomb repulsion are considered to be strong. The Lang-Firsov canonical transformation allows to obtain mobile polarons for which a new diagram technique and generalized Wick's theorem is used. This allows to handle the Coulomb repulsion between the electrons emerged into a sea of phonon fields (\textit{phonon clouds}). The physics of emission and absorption of the collective phonon-field mode by the polarons is discussed in detail. Moreover, we have investigated the different behavior of optical and acoustical phonon clouds when propagating through the lattice. In the strong-coupling limit of the electron-phonon interaction, and in the normal as well as in the superconducting phase, chronological thermodynamical averages of products of acoustical phonon-cloud operators can be expressed by one-cloud operator averages. While the normal one-cloud propagator has the form of a Lorentzian, the anomalous one is of Gaussian form and considerably smaller. Therefore, the anomalous electron Green's functions can be considered to be more important than corresponding polarons functions, i.e., pairing of electrons without phonon-clouds is easier to achieve than pairing of polarons with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Diagrammatic analysis of the Hubbard model:Stationary property of the thermodynamic potential

    Full text link
    Diagrammatic approach proposed many years ago for strong correlated Hubbard model is developed for analyzing of the thermodynamic potential properties. The new exact relation between such renormalized quantities as thermodynamic potential, one-particle propagator and correlation function is established. This relation contains additional integration of the one-particle propagator by the auxiliary constant. The vacuum skeleton diagrams constructed from irreducible Green's functions and tunneling propagator lines are determined and special functional is introduced. The properties of such functional are investigated and its relation to the thermodynamic potential is established. The stationary properties of this functional with respect to first order changing of the correlation function is demonstrated and as a consequence the stationary properties of the thermodynamic potential is proved.Comment: 6 pages, 4 figure

    Strong interaction of correlated electrons with phonons: Exchange of phonon clouds by polarons

    Full text link
    We investigate the interaction of strongly correlated electrons with phonons in the frame of the Hubbard-Holstein model. The electron-phonon interaction is considered to be strong and is an important parameter of the model besides the Coulomb repulsion of electrons and band filling. This interaction with the nondispersive optical phonons has been transformed to the problem of mobile polarons by using the canonical transformation of Lang and Firsov. We discuss in particular the case for which the on-site Coulomb repulsion is exactly cancelled by the phonon-mediated attractive interaction and suggest that polarons exchanging phonon clouds can lead to polaron pairing and superconductivity. It is then the frequency of the collective mode of phonon clouds being larger than the bare frequency, which determines the superconducting transition temperature.Comment: 23 pages, Submitted to Phys. Rev.

    Diagrammatic theory for Anderson Impurity Model. Stationary property of the thermodynamic potential

    Full text link
    A diagrammatic theory around atomic limit is proposed for normal state of Anderson Impurity Model. The new diagram method is based on the ordinary Wick's theorem for conduction electrons and a generalized Wick's theorem for gtrongly correlated impurity electrons. This last theorem coincides with the definition of Kubo cumulants. For the mean value of the evolution operator a linked cluster theorem is proved and a Dyson's type equations for one-particle propagators are established. The main element of these equations is the correlation function which contains the spin, charge and pairing fluctuations of the system. The thermodynamic potential of the system is expressed through one-particle renormalized Green's functions and the corelation function. The stationary property of the thermodynamic potential is established with respect to the changes of correlation function.Comment: 7 pages, 6 figures, Submitted to PR

    Diagrammatic theory for Periodic Anderson Model: Stationary property of the thermodynamic potential

    Full text link
    Diagrammatic theory for Periodic Anderson Model has been developed, supposing the Coulomb repulsion of ff- localized electrons as a main parameter of the theory. ff- electrons are strongly correlated and cc- conduction electrons are uncorrelated. Correlation function for ff- and mass operator for cc- electrons are determined. The Dyson equation for cc- and Dyson-type equation for ff- electrons are formulated for their propagators. The skeleton diagrams are defined for correlation function and thermodynamic functional. The stationary property of renormalized thermodynamic potential about the variation of the mass operator is established. The result is appropriate as for normal and as for superconducting state of the system.Comment: 12 pages, 10 figure

    Stationary property of the thermodynamic potential of the Hubbard model in strong coupling diagrammatic approach for superconducting state

    No full text
    Diagrammatic analysis for normal state of Hubbard model proposed in our previous paper is generalized and used to investigate superconducting state of this model. We use the notion of charge quantum number to describe the irreducible Green's function of the superconducting state. As in the previous paper we introduce the notion of tunneling Green's function and of its mass operator. This last quantity turns out to be equal to correlation function of the system. We proved the existence of exact relation between renormalized one-particle propagator and thermodynamic potential which includes integration over auxiliary interaction constant. The notion of skeleton diagrams of propagator and vacuum kinds were introduced. These diagrams are constructed from irreducible Green's functions and tunneling lines. Identity of this functional to the thermodynamic potential has been proved and the stationarity with respect to variation of the mass operator has been demonstrated
    corecore