527 research outputs found

    Isospin particle on S2S^{2} with arbitrary number of supersymmetries

    Get PDF
    We study the supersymmetric quantum mechanics of an isospin particle in the background of spherically symmetric Yang-Mills gauge field. We show that on S2S^{2} the number of supersymmetries can be made arbitrarily large for a specific choice of the spherically symmetric SU(2) gauge field. However, the symmetry algebra containing the supercharges becomes nonlinear if the number of fermions is greater than two. We present the exact energy spectra and eigenfunctions, which can be written as the product of monopole harmonics and a certain isospin state. We also find that the supersymmetry is spontaneously broken if the number of supersymmetries is even.Comment: 6 page

    Instanton solutions mediating tunneling between the degenerate vacua in curved space

    Full text link
    We investigate the instanton solution between the degenerate vacua in curved space. We show that there exist O(4)O(4)-symmetric solutions not only in de Sitter but also in both flat and anti-de Sitter space. The geometry of the new type of solutions is finite and preserves the Z2Z_2 symmetry. The nontrivial solution corresponding to the tunneling is possible only if gravity is taken into account. The numerical solutions as well as the analytic computations using the thin-wall approximation are presented. We expect that these solutions do not have any negative mode as in the instanton solution.Comment: Some typos are corrected and references are added with respect to the published version. 17pages, 11fi

    Low-magnetic-field control of dielectric constant at room temperature realized in Ba0.5Sr1.5Zn2Fe12O22

    Get PDF
    We show that room temperature resistivity of Ba0.5Sr1.5Zn2Fe12O22 single crystals increases by more than three orders of magnitude upon being subjected to optimized heat treatments. The increase in the resistivity allows the determination of magnetic field (H)-induced ferroelectric phase boundaries up to 310 K through the measurements of dielectric constant at a frequency of 10 MHz. Between 280 and 310 K, the dielectric constant curve shows a peak centered at zero magnetic field and thereafter decreases monotonically up to 0.1 T, exhibiting a magnetodielectric effect of 1.1%. This effect is ascribed to the realization of magnetic field-induced ferroelectricity at an H value of less than 0.1 T near room temperature. Comparison between electric and magnetic phase diagrams in wide temperature- and field-windows suggests that the magnetic field for inducing ferroelectricity has decreased near its helical spin ordering temperature around 315 K due to the reduction of spin anisotropy in Ba0.5Sr1.5Zn2Fe12O22

    Thermodynamic theory of stress distribution in epitaxial Pb(Zr, Ti)O-3 thin films

    Get PDF
    A phenomenological thermodynamic model has been developed to account for the effects of the film thickness on various properties of ferroelectric thin films. To this end, we have suitably incorporated a position-dependent stress distribution function into the elastic Gibbs function. Various physical properties can be predicted as a function of the film thickness using this modified thermodynamic formalism. A comparison of the theoretical predictions with experimental values of the average strain and the para-ferro transition temperature indicates that the tensile stress caused by the cubic-tetragonal displacive phase transition dominates over the compressive thermal stress in the epitaxially oriented tetragonal Pb(Zr, Ti)O-3 thin films. (C) 1999 American Institute of Physics. [S0003-6951(99)05546-1].open1158sciescopu

    Altered resting-state connectivity in subjects at ultra-high risk for psychosis: an fMRI study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals at ultra-high risk (UHR) for psychosis have self-disturbances and deficits in social cognition and functioning. Midline default network areas, including the medial prefrontal cortex and posterior cingulate cortex, are implicated in self-referential and social cognitive tasks. Thus, the neural substrates within the default mode network (DMN) have the potential to mediate self-referential and social cognitive information processing in UHR subjects.</p> <p>Methods</p> <p>This study utilized functional magnetic resonance imaging (fMRI) to investigate resting-state DMN and task-related network (TRN) functional connectivity in 19 UHR subjects and 20 matched healthy controls. The bilateral posterior cingulate cortex was selected as a seed region, and the intrinsic organization for all subjects was reconstructed on the basis of fMRI time series correlation.</p> <p>Results</p> <p>Default mode areas included the posterior/anterior cingulate cortices, the medial prefrontal cortex, the lateral parietal cortex, and the inferior temporal region. Task-related network areas included the dorsolateral prefrontal cortex, supplementary motor area, the inferior parietal lobule, and middle temporal cortex. Compared to healthy controls, UHR subjects exhibit hyperconnectivity within the default network regions and reduced anti-correlations (or negative correlations nearer to zero) between the posterior cingulate cortex and task-related areas.</p> <p>Conclusions</p> <p>These findings suggest that abnormal resting-state network activity may be related with the clinical features of UHR subjects. Neurodevelopmental and anatomical alterations of cortical midline structure might underlie altered intrinsic networks in UHR subjects.</p

    A complete solution of a Constrained System: SUSY Monopole Quantum Mechanics

    Full text link
    We solve the quantum mechanical problem of a charged particle on S^2 in the background of a magnetic monopole for both bosonic and supersymmetric cases by constructing Hilbert space and realizing the fundamental operators obeying complicated Dirac bracket relations in terms of differential operators. We find the complete energy eigenfunctions. Using the lowest energy eigenstates we count the number of degeneracies and examine the supersymmetric structure of the ground states in detail.Comment: 20 pages including the title, prepared in JHEP forma
    corecore