42,548 research outputs found

    Analyticity of the density of electronic wavefunctions

    Full text link
    We prove that the electronic densities of atomic and molecular eigenfunctions are real analytic in R3{\mathbb R}^3 away from the nuclei.Comment: 19 page

    Reweighting towards the chiral limit

    Full text link
    We propose to perform fully dynamical simulations at small quark masses by reweighting in the quark mass. This approach avoids some of the technical difficulties associated with direct simulations at very small quark masses. We calculate the weight factors stochastically, using determinant breakup and low mode projection to reduce the statistical fluctuations. We find that the weight factors fluctuate only moderately on nHYP smeared dynamical Wilson-clover ensembles, and we could successfully reweight 16^4, (1.85fm)^4 volume configurations from m_q = 20MeV to m_q = 5MeV quark masses, reaching the epsilon-regime. We illustrate the strength of the method by calculating the low energy constant F from the epsilon-regime pseudo-scalar correlator.Comment: 17 pages, 8 figure

    kmos: A lattice kinetic Monte Carlo framework

    Get PDF
    Kinetic Monte Carlo (kMC) simulations have emerged as a key tool for microkinetic modeling in heterogeneous catalysis and other materials applications. Systems, where site-specificity of all elementary reactions allows a mapping onto a lattice of discrete active sites, can be addressed within the particularly efficient lattice kMC approach. To this end we describe the versatile kmos software package, which offers a most user-friendly implementation, execution, and evaluation of lattice kMC models of arbitrary complexity in one- to three-dimensional lattice systems, involving multiple active sites in periodic or aperiodic arrangements, as well as site-resolved pairwise and higher-order lateral interactions. Conceptually, kmos achieves a maximum runtime performance which is essentially independent of lattice size by generating code for the efficiency-determining local update of available events that is optimized for a defined kMC model. For this model definition and the control of all runtime and evaluation aspects kmos offers a high-level application programming interface. Usage proceeds interactively, via scripts, or a graphical user interface, which visualizes the model geometry, the lattice occupations and rates of selected elementary reactions, while allowing on-the-fly changes of simulation parameters. We demonstrate the performance and scaling of kmos with the application to kMC models for surface catalytic processes, where for given operation conditions (temperature and partial pressures of all reactants) central simulation outcomes are catalytic activity and selectivities, surface composition, and mechanistic insight into the occurrence of individual elementary processes in the reaction network.Comment: 21 pages, 12 figure

    The state space of short-range Ising spin glasses: the density of states

    Full text link
    The state space of finite square and cubic Ising spin glass models is analysed in terms of the global and the local density of states. Systems with uniform and gaussian probability distribution of interactions are compared. Different measures for the local state density are presented and discussed. In particular the question whether the local density of states grows exponentially or not is considered. The direct comparison of global and local densities leads to consequences for the structure of the state space.Comment: 18 pages (including 6 figures); submitted to Z.f.Physik

    The impact of the EU ETS on the sectoral innovation system for power generation technologies: findings for Germany

    Get PDF
    This paper provides an overview of early changes in the sectoral innovation system for power generation technologies which have been triggered by the European Emission Trading Scheme (EU ETS). Based on a broad definition of the sector, our research analyses the impact of the EU ETS on the four building blocks knowledge and technologies, actors and networks, institutions and demand by combining two streams of literature, namely systems of innovation and environmental economics. Our analysis is based on 42 exploratory inter-views with German and European experts in the field of the EU ETS, the power sector and technological innovation. We find that the EU ETS mainly affects the rate and direction of the technological change of power generation technologies within the large-scale, coal-based power generation technological regime to which carbon capture technologies are added as a new technological trajectory. While this impact can be interpreted as defensive behaviour of incumbents, the observed changes should not be underestimated. We argue that the EU ETS' impact on corporate CO2 culture and routines may prepare the ground for the transition to a low carbon sectoral innovation system for power generation tech-nologies. --EU emission trading scheme (EU ETS),innovation system,power sector
    • …
    corecore