115 research outputs found

    Diffusion on random site percolation clusters. Theory and NMR microscopy experiments with model objects

    Full text link
    Quasi two-dimensional random site percolation model objects were fabricate based on computer generated templates. Samples consisting of two compartments, a reservoir of H2_2O gel attached to a percolation model object which was initially filled with D2_2O, were examined with NMR (nuclear magnetic resonance) microscopy for rendering proton spin density maps. The propagating proton/deuteron inter-diffusion profiles were recorded and evaluated with respect to anomalous diffusion parameters. The deviation of the concentration profiles from those expected for unobstructed diffusion directly reflects the anomaly of the propagator for diffusion on a percolation cluster. The fractal dimension of the random walk, dwd_w, evaluated from the diffusion measurements on the one hand and the fractal dimension, dfd_f, deduced from the spin density map of the percolation object on the other permits one to experimentally compare dynamical and static exponents. Approximate calculations of the propagator are given on the basis of the fractional diffusion equation. Furthermore, the ordinary diffusion equation was solved numerically for the corresponding initial and boundary conditions for comparison. The anomalous diffusion constant was evaluated and is compared to the Brownian case. Some ad hoc correction of the propagator is shown to pay tribute to the finiteness of the system. In this way, anomalous solutions of the fractional diffusion equation could experimentally be verified for the first time.Comment: REVTeX, 12 figures in GIF forma

    IL-6 signaling in macrophages is required for immunotherapy-driven regression of tumors

    Get PDF
    Background High serum interleukin (IL-6) levels may cause resistance to immunotherapy by modulation of myeloid cells in the tumor microenvironment. IL-6 signaling blockade is tested in cancer, but as this inflammatory cytokine has pleiotropic effects, this treatment is not always effective. Methods IL-6 and IL-6R blockade was applied in an IL-6-mediated immunotherapy-resistant TC-1 tumor model (TC-1.IL-6) and immunotherapy-sensitive TC-1.control. Effects on therapeutic vaccination-induced tumor regression, recurrence and survival as well on T cells and myeloid cells in the tumor microenvironment were studied. The effects of IL-6 signaling in macrophages under therapy conditions were studied in Il6ra(fl/fl)xLysM(cre+) mice. Results Our therapeutic vaccination protocol elicits a strong tumor-specific CD8(+) T-cell response, leading to enhanced intratumoral T-cell infiltration and recruitment of tumoricidal macrophages. Blockade of IL-6 signaling exacerbated tumor outgrowth, reflected by fewer complete regressions and more recurrences after therapeutic vaccination, especially in TC-1.IL-6 tumor-bearing mice. Early IL-6 signaling blockade partly inhibited the development of the vaccine-induced CD8(+) T-cell response. However, the main mechanism was the malfunction of macrophages during therapy-induced tumor regression. Therapy efficacy was impaired in Il6ra(fl/fl)xLysM(cre+) but not cre-negative control mice, while no differences in the vaccine-induced CD8(+) T-cell response were found between these mice. IL-6 signaling blockade resulted in decreased expression of suppressor of cytokine signaling 3, essential for effective M1-type function in macrophages, and increased expression of the phagocytic checkpoint molecule signal-regulatory protein alpha by macrophages. Conclusion IL-6 signaling is critical for macrophage function under circumstances of immunotherapy-induced tumor tissue destruction, in line with the acute inflammatory functions of IL-6 signaling described in infections.Experimental cancer immunology and therap

    Synaptic Proteins Linked to HIV-1 Infection and Immunoproteasome Induction: Proteomic Analysis of Human Synaptosomes

    Get PDF
    Infection of the central nervous system with human immunodeficiency virus type 1 (HIV-1) can produce morphological changes in the neocortical synaptodendritic arbor that are correlated with neurocognitive impairment. To determine whether HIV-1 infection influences the protein composition of human synapses, a proteomic study of isolated nerve endings was undertaken. Synaptosomes from frontal neocortex were isolated using isopyknic centrifugation from 19 human brain specimens. Purity and enrichment were assessed by measuring pre- and postsynaptic protein markers. Two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to screen for proteins differentially expressed in HIV/AIDS. The concentrations of 31 candidate protein spots were potentially abnormal in HIV-infected decedents with HIV encephalitis and/or increased expression of immunoproteasome subunits. Immunoblots showed that the concentration of some of them was related to HIV-1 infection of the brain and immunoproteasome (IPS) induction. Synapsin 1b and stathmin were inversely related to brain HIV-1 load; 14-3-3ζ and 14-4-4ε proteins were higher in subjects with HIV-1 loads. Perturbed synaptosome proteins were linked with IPS subunit composition, and 14-3-3ζ was histologically colocalized with IPS subunits in stained neocortical neurons. Proteomics illustrates that certain human proteins within the synaptic compartment are involved with changes in the synaptodendritic arbor and neurocognitive impairment in HIV-1-infected people

    Identification of Mammalian Protein Quality Control Factors by High-Throughput Cellular Imaging

    Get PDF
    Protein Quality Control (PQC) pathways are essential to maintain the equilibrium between protein folding and the clearance of misfolded proteins. In order to discover novel human PQC factors, we developed a high-content, high-throughput cell-based assay to assess PQC activity. The assay is based on a fluorescently tagged, temperature sensitive PQC substrate and measures its degradation relative to a temperature insensitive internal control. In a targeted screen of 1591 siRNA genes involved in the Ubiquitin-Proteasome System (UPS) we identified 25 of the 33 genes encoding for 26S proteasome subunits and discovered several novel PQC factors. An unbiased genome-wide siRNA screen revealed the protein translation machinery, and in particular the EIF3 translation initiation complex, as a novel key modulator of misfolded protein stability. These results represent a comprehensive unbiased survey of human PQC components and establish an experimental tool for the discovery of genes that are required for the degradation of misfolded proteins under conditions of proteotoxic stress

    The role of the proteasome in the generation of MHC class I ligands and immune responses

    Get PDF
    The ubiquitin–proteasome system (UPS) degrades intracellular proteins into peptide fragments that can be presented by major histocompatibility complex (MHC) class I molecules. While the UPS is functional in all mammalian cells, its subunit composition differs depending on cell type and stimuli received. Thus, cells of the hematopoietic lineage and cells exposed to (pro)inflammatory cytokines express three proteasome immunosubunits, which form the catalytic centers of immunoproteasomes, and the proteasome activator PA28. Cortical thymic epithelial cells express a thymus-specific proteasome subunit that induces the assembly of thymoproteasomes. We here review new developments regarding the role of these different proteasome components in MHC class I antigen processing, T cell repertoire selection and CD8 T cell responses. We further discuss recently discovered functions of proteasomes in peptide splicing, lymphocyte survival and the regulation of cytokine production and inflammatory responses

    Regulation of proteasome assembly and activity in health and disease

    Get PDF
    corecore