30 research outputs found

    Minimum cycle bases of direct products of complete graphs

    Get PDF
    Abstract This paper presents a construction of a minimum cycle basis for the direct product of two complete graphs on three or more vertices. With the exception of two special cases, such bases consist entirely of triangles

    Attribute Controlled Reconstruction and Adaptive Mathematical Morphology

    No full text
    ISBN : 978-3-642-38293-2International audienceIn this paper we present a reconstruction method controlled by the evolution of attributes. The process begins from a marker, propagated over increasing quasi-flat zones. The evolution of several increasing and non-increasing attributes is studied in order to select the appropriate region. Additionally, the combination of attributes can be used in a straightforward way. To demonstrate the performance of our method, three applications are presented. Firstly, our method successfully segments connected objects in range images. Secondly, input-adaptive structuring elements (SE) are defined computing the controlled propagation for each pixel on a pilot image. Finally, input-adaptive SE are used to assess shape features on the image. Our approach is multi-scale and auto-dual. Compared with other methods, it is based on a given attribute but does not require a size parameter in order to determine appropriate regions. It is useful to extract objects of a given shape. Additionally, our reconstruction is a connected operator since quasi-flat zones do not create new contours on the image

    Exploring the Design Space of Static and Incremental Graph Connectivity Algorithms on GPUs

    Full text link
    Connected components and spanning forest are fundamental graph algorithms due to their use in many important applications, such as graph clustering and image segmentation. GPUs are an ideal platform for graph algorithms due to their high peak performance and memory bandwidth. While there exist several GPU connectivity algorithms in the literature, many design choices have not yet been explored. In this paper, we explore various design choices in GPU connectivity algorithms, including sampling, linking, and tree compression, for both the static as well as the incremental setting. Our various design choices lead to over 300 new GPU implementations of connectivity, many of which outperform state-of-the-art. We present an experimental evaluation, and show that we achieve an average speedup of 2.47x speedup over existing static algorithms. In the incremental setting, we achieve a throughput of up to 48.23 billion edges per second. Compared to state-of-the-art CPU implementations on a 72-core machine, we achieve a speedup of 8.26--14.51x for static connectivity and 1.85--13.36x for incremental connectivity using a Tesla V100 GPU

    Understanding the U.S. domestic computer science Ph.D. pipeline

    No full text

    Assessing Student Performance in a Computational-Thinking Based Science Learning Environment

    No full text

    Efficient evaluation of continuous range queries on moving objects

    No full text
    Abstract. In this paper we evaluate several in-memory algorithms for efficient and scalable processing of continuous range queries over collections of moving objects. Constant updates to the index are avoided by query indexing. No constraints are imposed on the speed or path of moving objects. We present a detailed analysis of a grid approach which shows the best results for both skewed and uniform data. A sorting based optimization is developed for significantly improving the cache hit ratio. Experimental evaluation establishes that indexing queries using the Grid index yields orders of magnitude better performance than other index structures such as R*-trees.
    corecore