487 research outputs found

    Safety of Li-SOCl2 cells

    Get PDF
    The safety of lithium thionyl chloride cells has been a concern of JPL for some time in the development of these cells for NASA's use. Because the safety problems are complex and several issues are interrelated it was decided that it would be best to put together an organized review of the safety issues, which are reviewed here. Hazards are classified in three categories: (1) cell leakage, a problem dealing with construction or materials; (2) venting of toxic gases through seals and welds, considered a mild hazard in which electrolyte and gas is released; and (3) violent rupture or controlled rupture of cells with the possibility of explosion of the materials inside. These hazards and their effects are detailed along with possible ways of dealing with them

    Test results of JPL LiSOCl sub 2 cells

    Get PDF
    In the development of high rate Li-SO-Cl2 cells for various applications, the goal is to achieve 300 watt-hours per kilogram at the C/2 (5 amp) rate in a D cell configuration. The JPL role is to develop the understanding of the performance, life, and safety limiting characteristics in the cell and to transfer the technology to a manufacturer to produce a safe, high quality product in a reproducible manner. The approach taken to achieve the goals is divided into four subject areas: cathode processes and characteristics; chemical reactions and safety; cell design and assembly; and performance and abuse testing. The progress made in each of these areas is discussed

    Secondary aerospace batteries and battery materials: A bibliography, 1969 - 1974

    Get PDF
    This annotated bibliography on the subject of secondary aerospace battery materials and related physical and electrochemical processes was compiled from references to journal articles published between 1969 and 1974. A total of 332 citations are arranged in chronological order under journal titles. Indices by system and component, techniques and processes, and author are included

    Development of ambient temperature secondary lithium cells

    Get PDF
    JPL is developing ambient temperature secondary lithium cells for future spacecraft applications. Prior studies on experimental laboratory type Li-TiS2 cells yielded promising results in terms of cycle life and rate capability. To further assess the performance of this cell, 5 Ah engineering model cells were developed. Initially baseline cells were designed and fabricated. Each cell had 15 cathodes and 16 anodes and the ratio of anode to cathode capacity is 6:1. A solution of 1.5 molar LiAsF6 in 2Me-THF was used as the electrolyte. Cells were evaluated for their cycle life at C/1 and C/5 discharge rates and 100 percent depth of discharge. The cells were cycled between voltage limits 1.7 and 2.8 volts. The rate of charge in all cases is C/10. The results obtained indicate that cells can operate at C/10 to C/2 discharge rates and have an initial energy density of 70 Wh/kg. Cells delivered more than 100 cycles at C/2 discharge rate. The details of cell design, the test program, and the results obtained are described

    An update of the JPL program to develop Li-SOCl2 cells

    Get PDF
    The goal of producing spiral wound D cell was met. The cell design and electrodes, particularly the carbon cathodes were produced in-house. Also all parts were assembled, the welding performed, the electrolyte aided and the cells sealed in-house. The lithium capacity (theoretical) was 19.3 Ah and that of the SOCl2 in the 1.8 m LiAlCl4 electrolyte, 16.4 Ah (a greater excess of SOCl2 is necessary for safe high rate operation). The electrode surface area was 452 sq cm. The carbon electrode comprised Shawinigen Black/Teflon -30 (90/10 by weight) mixture 0.020 inches thick on an expanded metal screen prepared in the JPL laboratory. There were two tab connections to the cathode. The 0.0078 inch thick lithium foil was rolled into an expanded nickel screen. The separator was Mead 934-5 fiberglass material

    An Historical Summary and Prospects for the Future of Spacecraft Batteries

    Get PDF
    Subjects covered in this report include a historical evolution of batteries in space, evolution and status of nickel-cadmium batteries and nickel-hydrogen batteries, present applications, future applications and advanced batteries for future missions

    Chemical analysis of charged Li/SO(sub)2 cells

    Get PDF
    The initial focus of the program was to confirm that charging can indeed result in explosions and constitute a significant safety problem. Results of this initial effort clearly demonstrated that cells do indeed explode on charge and that charging does indeed constitute a real and severe safety problem. The results of the effort to identify the chemical reactions involved in and responsible for the observed behavior are described

    Polymer electrolyte membrane assembly for fuel cells

    Get PDF
    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells

    Polymer electrolyte membrane assembly for fuel cells

    Get PDF
    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells

    Lithium-Ion Batteries for Aerospace Applications

    Get PDF
    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented
    • …
    corecore