6,022 research outputs found

    Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

    Full text link
    Building on a pair of earlier papers, I investigate the various point-wise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the in the (1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors are analytically known, I can get exact results for the Hartle--Hawking, Boulware, and Unruh vacua. This exactly solvable model serves as a useful sanity check on my (3+1)-dimensional investigations wherein I had to resort to a mixture of analytic approximations and numerical techniques. Key results in (1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC is violated everywhere in the spacetime (for any quantum state, not just the standard vacuum states).Comment: 7 pages, ReV_Te

    Gravitational vacuum polarization IV: Energy conditions in the Unruh vacuum

    Full text link
    Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008, gr-qc/9604009], I investigate the various point-wise and averaged energy conditions in the Unruh vacuum. I consider the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field, work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. I construct a semi-analytic model for the stress-energy tensor that globally reproduces all known numerical results to within 0.8%, and satisfies all known analytic features of the stress-energy tensor. I show that in the Unruh vacuum (1) all standard point-wise energy conditions are violated throughout the exterior region--all the way from spatial infinity down to the event horizon, and (2) the averaged null energy condition is violated on all outgoing radial null geodesics. In a pair of appendices I indicate general strategy for constructing semi-analytic models for the stress-energy tensor in the Hartle-Hawking and Boulware states, and show that the Page approximation is in a certain sense the minimal ansatz compatible with general properties of the stress-energy in the Hartle-Hawking state.Comment: 40 pages; plain LaTeX; uses epsf.sty (ten encapsulated postscript figures); two tables (table and tabular environments). Should successfully compile under both LaTeX 209 and the 209 compatibility mode of LaTeX2

    Structural Changes of Yellow Cameleon Domains Observed by Quantitative FRET Analysis and Polarized Fluorescence Correlation Spectroscopy

    Get PDF
    Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand bindin

    Might EPR particles communicate through a wormhole?

    Get PDF
    We consider the two-particle wave function of an Einstein-Podolsky-Rosen system, given by a two dimensional relativistic scalar field model. The Bohm-de Broglie interpretation is applied and the quantum potential is viewed as modifying the Minkowski geometry. In this way an effective metric, which is analogous to a black hole metric in some limited region, is obtained in one case and a particular metric with singularities appears in the other case, opening the possibility, following Holland, of interpreting the EPR correlations as being originated by an effective wormhole geometry, through which the physical signals can propagate.Comment: Corrected version, to appears in EP

    Tolman wormholes violate the strong energy condition

    Get PDF
    For an arbitrary Tolman wormhole, unconstrained by symmetry, we shall define the bounce in terms of a three-dimensional edgeless achronal spacelike hypersurface of minimal volume. (Zero trace for the extrinsic curvature plus a "flare-out" condition.) This enables us to severely constrain the geometry of spacetime at and near the bounce and to derive general theorems regarding violations of the energy conditions--theorems that do not involve geodesic averaging but nevertheless apply to situations much more general than the highly symmetric FRW-based subclass of Tolman wormholes. [For example: even under the mildest of hypotheses, the strong energy condition (SEC) must be violated.] Alternatively, one can dispense with the minimal volume condition and define a generic bounce entirely in terms of the motion of test particles (future-pointing timelike geodesics), by looking at the expansion of their timelike geodesic congruences. One re-confirms that the SEC must be violated at or near the bounce. In contrast, it is easy to arrange for all the other standard energy conditions to be satisfied.Comment: 8 pages, ReV-TeX 3.

    Restrictions on negative energy density in a curved spacetime

    Get PDF
    Recently a restriction ("quantum inequality-type relation") on the (renormalized) energy density measured by a static observer in a "globally static" (ultrastatic) spacetime has been formulated by Pfenning and Ford for the minimally coupled scalar field, in the extension of quantum inequality-type relation on flat spacetime of Ford and Roman. They found negative lower bounds for the line integrals of energy density multiplied by a sampling (weighting) function, and explicitly evaluate them for some specific spacetimes. In this paper, we study the lower bound on spacetimes whose spacelike hypersurfaces are compact and without boundary. In the short "sampling time" limit, the bound has asymptotic expansion. Although the expansion can not be represented by locally invariant quantities in general due to the nonlocal nature of the integral, we explicitly evaluate the dominant terms in the limit in terms of the invariant quantities. We also make an estimate for the bound in the long sampling time limit.Comment: LaTex, 23 Page

    van Vleck determinants: traversable wormhole spacetimes

    Full text link
    Calculating the van Vleck determinant in traversable wormhole spacetimes is an important ingredient in understanding the physical basis behind Hawking's chronology protection conjecture. This paper presents extensive computations of this object --- at least in the short--throat flat--space approximation. An important technical trick is to use an extension of the usual junction condition formalism to probe the full Riemann tensor associated with a thin shell of matter. Implications with regard to Hawking's chronology protection conjecture are discussed. Indeed, any attempt to transform a single isolated wormhole into a time machine results in large vacuum polarization effects sufficient to disrupt the internal structure of the wormhole before the onset of Planck scale physics, and before the onset of time travel. On the other hand, it is possible to set up a putative time machine built out of two or more wormholes, each of which taken in isolation is not itself a time machine. Such ``Roman configurations'' are much more subtle to analyse. For some particularly bizarre configurations (not traversable by humans) the vacuum polarization effects can be arranged to be arbitrarily small at the onset of Planck scale physics. This indicates that the disruption scale has been pushed down into the Planck slop. Ultimately, for these configurations, questions regarding the truth or falsity of Hawking's chronology protection can only be addressed by entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP
    • …
    corecore