816 research outputs found

    Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates

    Full text link
    The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed.Comment: 5 pages, 3 figure

    Exploring AdS Waves Via Nonminimal Coupling

    Full text link
    We consider nonminimally coupled scalar fields to explore the Siklos spacetimes in three dimensions. Their interpretation as exact gravitational waves propagating on AdS restrict the source to behave as a pure radiation field. We show that the related pure radiation constraints single out a unique self-interaction potential depending on one coupling constant. For a vanishing coupling constant, this potential reduces to a mass term with a mass fixed in terms of the nonminimal coupling parameter. This mass dependence allows the existence of several free cases including massless and tachyonic sources. There even exists a particular value of the nonminimal coupling parameter for which the corresponding mass exactly compensates the contribution generated by the negative scalar curvature, producing a genuinely massless field in this curved background. The self-interacting case is studied in detail for the conformal coupling. The resulting gravitational wave is formed by the superposition of the free and the self-interaction contributions, except for a critical value of the coupling constant where a non-perturbative effect relating the strong and weak regimes of the source appears. We establish a correspondence between the scalar source supporting an AdS wave and a pp wave by showing that their respective pure radiation constraints are conformally related, while their involved backgrounds are not. Finally, we consider the AdS waves for topologically massive gravity and its limit to conformal gravity.Comment: 26 pages, 1 figure. Minor change

    Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films

    Full text link
    Superconducting quantum phase transitions tuned by disorder (d), paramagnetic impurity (MI) and perpendicular magnetic field (B) have been studied in homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is characterized by progressive suppression of the critical temperature to zero and a continuous transition to a weakly insulating normal state with increasing MI density. In all important aspects, the d-tuned transition closely resembles the MI-tuned transition and both appear to be fermionic in nature. The B-tuned transition is qualitatively different and probably bosonic. In the critical region it exhibits transport behavior that suggests a B-induced mesoscale phase separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure

    Chaotic dynamics in preheating after inflation

    Full text link
    We study chaotic dynamics in preheating after inflation in which an inflaton ϕ\phi is coupled to another scalar field χ\chi through an interaction (1/2)g2ϕ2χ2(1/2)g^2\phi^2\chi^2. We first estimate the size of the quasi-homogeneous field χ\chi at the beginning of reheating for large-field inflaton potentials V(ϕ)=V0ϕnV(\phi)=V_0\phi^n by evaluating the amplitude of the χ\chi fluctuations on scales larger than the Hubble radius at the end of inflation. Parametric excitations of the field χ\chi during preheating can give rise to chaos between two dynamical scalar fields. For the quartic potential (n=4n=4, V0=λ/4V_0=\lambda/4) chaos actually occurs for g2/λ<O(10)g^2/\lambda <{\cal O}(10) in a linear regime before which the backreaction of created particles becomes important. This analysis is supported by several different criteria for the existence of chaos. For the quadratic potential (n=2n=2) the signature of chaos is not found by the time at which the backreaction begins to work, similar to the case of the quartic potential with g2/λ≫1g^2/\lambda \gg 1.Comment: 12 pages, 10 figures, Version to appear in Classical and Quantum Gravit

    Pre-Hawking Radiation from a Collapsing Shell

    Full text link
    We investigate the effect of induced massive radiation given off during the time of collapse of a massive spherically symmetric domain wall in the context of the functional Schr\"odinger formalism. Here we find that the introduction of mass suppresses the occupation number in the infrared regime of the induced radiation during the collapse. The suppression factor is found to be given by e−βme^{-\beta m}, which is in agreement with the expected Planckian distribution of induced radiation. Thus a massive collapsing domain wall will radiate mostly (if not exclusively) massless scalar fields, making it difficult for the domain wall to shed any global quantum numbers and evaporate before the horizon is formed.Comment: 10 pages, 3 figures. We updated the acknowledgments as well as added a statement clarifying that we are following the methods first laid out in Phys. Rev. D 76, 024005 (2007

    Translational Symmetry Breaking in the Superconducting State of the Cuprates: Analysis of the Quasiparticle Density of States

    Full text link
    Motivated by the recent STM experiments of J.E. Hoffman et.al. and C. Howald et.al., we study the effects of weak translational symmetry breaking on the quasiparticle spectrum of a d-wave superconductor. We develop a general formalism to discuss periodic charge order, as well as quasiparticle scattering off localized defects. We argue that the STM experiments in Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} cannot be explained using a simple charge density wave order parameter, but are consistent with the presence of a periodic modulation in the electron hopping or pairing amplitude. We review the effects of randomness and pinning of the charge order and compare it to the impurity scattering of quasiparticles. We also discuss implications of weak translational symmetry breaking for ARPES experiments.Comment: 12 pages, 9 figs; (v2) minor corrections to formalism, discussions of dispersion, structure factors and sum rules added; (v3) discussion of space-dependent normalization added. To be published in PR

    Solutions of Minimal Four Dimensional de Sitter Supergravity

    Full text link
    Pseudo-supersymmetric solutions of minimal N=2N=2, D=4D=4 de Sitter supergravity are classified using spinorial geometry techniques. We find three classes of solutions. The first class of solution consists of geometries which are fibrations over a 3-dimensional manifold equipped with a Gauduchon-Tod structure. The second class of solution is the cosmological Majumdar-Papapetrou solution of Kastor and Traschen, and the third corresponds to gravitational waves propagating in the Nariai cosmology.Comment: 17 Pages. Minor correction to section 4; equation (4.21) corrected and (old) equation (4.26) deleted; the final result is unchange

    On the divergences of inflationary superhorizon perturbations

    Full text link
    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that within the stochastic framework they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the ΔN\Delta N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for the infrared cutoff would of course be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization group invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.Comment: 12 page

    SO(4) Theory of Competition between Triplet Superconductivity and Antiferromagnetism in Bechgaard Salts

    Full text link
    Motivated by recent experiments with Bechgaard salts, we investigate the competition between antiferromagnetism and triplet superconductivity in quasi one-dimensional electron systems. We unify the two orders in an SO(4) symmetric framework, and demonstrate the existence of such symmetry in one-dimensional Luttinger liquids. SO(4) symmetry, which strongly constrains the phase diagram, can explain coexistence regions between antiferromagnetic, superconducting, and normal phases, as observed in (TMTSF)2_2PF6_6. We predict a sharp neutron scattering resonance in superconducting samples.Comment: 5 pages, 3 figures; Added discussion of applicability of SO(4) symmetry for strongly anisotropic Fermi liquids; Added reference

    On Spacetimes with Constant Scalar Invariants

    Full text link
    We study Lorentzian spacetimes for which all scalar invariants constructed from the Riemann tensor and its covariant derivatives are constant (CSICSI spacetimes). We obtain a number of general results in arbitrary dimensions. We study and construct warped product CSICSI spacetimes and higher-dimensional Kundt CSICSI spacetimes. We show how these spacetimes can be constructed from locally homogeneous spaces and VSIVSI spacetimes. The results suggest a number of conjectures. In particular, it is plausible that for CSICSI spacetimes that are not locally homogeneous the Weyl type is IIII, IIIIII, NN or OO, with any boost weight zero components being constant. We then consider the four-dimensional CSICSI spacetimes in more detail. We show that there are severe constraints on these spacetimes, and we argue that it is plausible that they are either locally homogeneous or that the spacetime necessarily belongs to the Kundt class of CSICSI spacetimes, all of which are constructed. The four-dimensional results lend support to the conjectures in higher dimensions.Comment: 25 pages, 1 figure, v2: minor changes throughou
    • …
    corecore